Skip to main content
Log in

On the influence of the effective mass of electrons on the Fermi energy of metal–insulator nanosandwiches

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The size dependences of the Fermi energy of metallic films of Al and Pb bordering with the dielectrics SiO2, Al2O3, HfO2, ZrO2, and TiO2 have been calculated. The model of free electrons and an asymmetric potential well has been modified by the introduction of the effective masses of electrons in the metal and in the insulator. The evolution of the size oscillations of the Fermi energy of metallic films in different dielectric surroundings upon the variation of the effective masses of electrons both in the metal and in the insulator has been analyzed. It has been shown that the allowance for the effective mass of electrons in the metal leads to a more substantial change in the position of the Fermi level in comparison with the allowance for the effective mass of the dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hövel, B. Gompf, and M. Dressel, “Electrodynamics of ultrathin gold films at the insulator-to-metal transition,” Thin Solid Films 519, 2955–2958 (2011).

    Article  Google Scholar 

  2. M. G. del Muro, Z. Konstantinovic, X. Batlle, and A. Labarta, “From capacitive to tunnelling conduction through annealing in metal–insulating granular films: The role of ultra-small particles,” J. Phys. D: Appl. Phys. 46, 495304 (2013).

    Article  Google Scholar 

  3. J. Mandrino, M. Godec, and D. Nolan, “Oxide-state evaluation of the zinc and aluminum in metallic thin films using Auger-electron-spectroscopy depth profiles,” Vacuum 98, 88–92 (2013).

    Article  Google Scholar 

  4. R. Sh. Ikhsanova, V. E. Babicheva, I. E. Protsenko, A. V. Uskov, and M. E. Guzhva, “Bulk photoemission from metal films and nanoparticles,” Quant. Electron. 45, 50–58 (2015).

    Article  Google Scholar 

  5. V. V. Pogosov, A. V. Babich, and P. V. Vakula, “On the influence of the band structure of insulators and image forces on the spectral characteristics of metal–insulator film systems,” Phys. Solid State 55, 2120–2123 (2013).

    Article  Google Scholar 

  6. A. V. Babich, “On calculating the energy characteristics of a metal film with a dielectric coating,” Phys. Met. Metallogr. 115, 107–116 (2014).

    Article  Google Scholar 

  7. A. V. Korotun, “Size oscillations of the work function of a metal film on a dielectric substrate,” Phys. Solid State 57, 391–394 (2015).

    Article  Google Scholar 

  8. V. P. Kurbatsky and V. V. Pogosov, “Optical conductivity of metal nanofilms and nanowires: The rectangularbox model,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 155404 (2010).

    Article  Google Scholar 

  9. W. A. Harrison, Solid State Theory (McGraw-Hill, New York, 1969; Mir, Moscow, 1972).

    Google Scholar 

  10. A. O. E. Animalu, Intermediate Quantum Theory of Crystalline Solids (Prentice Hall, Englewood Cliffs, NJ, 1977; Mir, Moscow, 1981).

    Google Scholar 

  11. N. B. Brandt and V. A. Kul’bachinskii, Quasi-particles in Condensed Matter Physics (Fizmatlit, Moscow, 2010), 3rd ed. [in Russian].

    Google Scholar 

  12. T. V. Perevalov and V. A. Gritsenko, “Application and electronic structure of high-permittivity dielectrics,” 53, 561–575 (2010).

    Google Scholar 

  13. A. V. Babich, V. V. Pogosov, and P. V. Vakula, “To the problem of positron states in metal–insulator nanosandwiches,” Phys. Solid State 57, 142–147 (2015).

    Article  Google Scholar 

  14. V. P. Kurbatskii, A. V. Korotun, V. V. Pogosov, and E. V. Vasyutin, “Size dependence of the transmittance for metal nanofilms in the infrared range,” Phys. Solid State 50, 949–956 (2008).

    Article  Google Scholar 

  15. V. Fomenko, Emission Properties of Chemical Elements and Their Compounds (Naukova Dumka, Kiev, 1980) [in Russian]; Handbook of Thermionic Properties: Electronic Work Functions and Richardson Constants of Elements and Compounds (New York: Plenum, 1966).

    Google Scholar 

  16. C. Fall, “Ab initio study of the work functions of elemental metal crystals,” These No. 1955 pour l’obtention du grade de doctor ès sciences (EPFL, Lausanne, 1999).

    Google Scholar 

  17. J. H. Dil, J. W. Kim, Th. Kampen, K. Horn, and A. R. H. F. Ettema, “Electron localization in metallic quantum wells: Pb versus In on Si(111),” Phys. Rev. B: Condens. Matter Mater. Phys. 73, 161308 (2006).

    Article  Google Scholar 

  18. Y. Yee-Chia, T.-J. King, and H. Chenming, “Direct tunneling leakage current and scalability of alternative dielectrics,” Appl. Phys. Lett. 81, 2091–2093 (2002).

    Article  Google Scholar 

  19. H. Takeuchi and T.-J. King, “Scaling limits of hafnium-silicate films for gate–dielectric applications,” Appl. Phys. Lett. 83 (4), 788–790 (2003).

    Article  Google Scholar 

  20. S. Clima, B. Kaszer, B. Govoreanu, A. S. Verhulst, and M. Jurczak, “Determination of ultimate leakage through rutile TiO2 and tetragonal ZrO2 from ab initio complex band calculations,” IEEE Electr. Device Lett. 34, 402–404 (2013).

    Article  Google Scholar 

  21. V. Mikhelashvili and G. J. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” J. Appl. Phys. 89, 3256–3269 (2001).

    Article  Google Scholar 

  22. Z. Xu, L. Pantisano, A. Kerber, R. Degraeve, E. Cartier, S. Degendt, M. Heyns, and G. Groeseneken, “A study of relaxation current in high-κ dielectric stacks,” IEEE Trans. Electron Dev. 51, 402–408 (2004).

    Article  Google Scholar 

  23. J. Kim, J. Song, O. Kwon, S. Kim, Ch. S. Hwang, S.-H. Park, S. J. Yun, J. Jeong, and K. S. Hyun, “Improvement in electrical insulating properties of 10-nm-thick film grown on Al/TiN/Si substrate by remote plasma annealing at low temperatures,” Appl. Phys. Lett. 80, 2734–2736 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Korotun.

Additional information

Original Russian Text © A.V. Korotun, A.V. Babich, Ya.V. Karandas, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 5, pp. 442–445.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotun, A.V., Babich, A.V. & Karandas, Y.V. On the influence of the effective mass of electrons on the Fermi energy of metal–insulator nanosandwiches. Phys. Metals Metallogr. 117, 426–429 (2016). https://doi.org/10.1134/S0031918X16050112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16050112

Keywords

Navigation