Skip to main content
Log in

Effect of plastic deformation on the electrophysical properties and structure of YBa2Cu3O y ceramics subjected to low-temperature treatment

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The electrophysical properties and structure of HTSC YBa2Cu3O y compound (123) subjected to plastic deformation by shear under a pressure of 1.7 GPa have been studied. After deformation, the electrophysical properties of samples prepared using the traditional ceramic technology were found to deteriorate. Subsequent annealing at 930°C cannot restore the critical current density (j c) in low magnetic fields to initial magnitudes; however, in magnetic fields of more than 0.1 T, the j c magnitude increases compared to that for the starting state. The deformation of 123 ceramics treated at 200°C in a humid atmosphere that has undergone phase transformation into the 124 tetragonal phase allows its structure and electrophysical properties to be restored. In this case, the reverse transformation of phase 124 into 123, which is accompanied by the recrystallization of the material, takes place. The combination of low-temperature treatment and high shearing deformation leads to the appearance of texture and an increase of j c, in particular in high magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Sudareva, E. I. Kuznetsova, T. P. Krinitsina, I. B. Bobylev, and E. P. Romanov, “Modulated structures in nonstoichiometric YBa2Cu3O7–δ compounds,” Physica A 331, 263–273 (2000).

    Article  Google Scholar 

  2. I. B. Bobylev and N. A. Zyuzeva, “Influence of chemical composition on the stability of YBa2Cu3Oy in a humid atmosphere,” Phys. Solid State 55, 930–936 (2013).

    Article  Google Scholar 

  3. S. V. Sudareva, E. P. Romanov, T. P. Krinitsina, E. I. Kuznetsova, Yu. V. Blinova, I. B. Bobylev, N. A. Zyuzeva, and A. M. Burkhanov, “Fine structure and the mechanism of the low-temperature decomposition of the nonstoichiometric compounds YBa2Cu3O6.8 and YBa2Cu3O6.8 doped with Ce,” Phys. Met. Metallogr. 106, 364–373 (2008).

    Article  Google Scholar 

  4. N. A. Zyuzeva and I. B. Bobylev, “Peculiarities of microstructure of YBa2Cu3O7–δ single crystals heat treated under different conditions,” Phys. Met. Metallogr. 115, 358–364 (2014).

    Article  Google Scholar 

  5. Zhao Rupeng, M. J. Goringe, S. Myhra, and P. S. Turner, “Transmission electron microscopy and high-resolution transmission electron microscopy studies of the early stages in the degradation of YBa2Cu3O7–δ superconductor in water vapor,” Philos. Mag. A 66, 491–506 (1992).

  6. W. Gunther, R. Schollhorn, H. Siegle, and C. Thomsen, “Topotactic reactions of superconducting YBa2Cu3O7 thin films with water vapor,” Solid State Ionics 84, 23–32 (1996).

    Article  Google Scholar 

  7. W. Gunther and R. Schollhorn, “Insertion of water into rare earth oxocuprates (Ln)Ba2Cu3O7–δ,” Physica A 271, 241–250 (1996).

    Article  Google Scholar 

  8. W. Gunther, R. Schollhorn, M. Epple, H. Siegle, Ch. Thomsen, B. Kabius, U. Poppe, J. Schubert, and W. Zander, “Hydrogen and water intercalation into YBa2Cu3O7–δ: Structural properties of H2YBa2Cu3O8–δ,” Philos. Mag. A 79, 449–466 (1999).

    Article  Google Scholar 

  9. I. B. Bobylev, Yu. S. Ponosov, and N. A. Zyuzeva, “Interaction of YBa2Cu3O6.8 with atmospheric moisture during low-temperature annealing,” Phys. Solid State 56, 1536–1541 (2014).

    Article  Google Scholar 

  10. J. G. Tompson, B. G. Hyde, R. L. Withers, J. S. Anderson, G. J. D. Fitz, J. Bitmead, and M. S. Paterson, “Atmospheric degradation of the high-temperature superconductor YBa2Cu3O7–x,” Mater. Res. Bull. 22, 1715–1724 (1987).

    Article  Google Scholar 

  11. O. Wada, T. Odaka, M. Wakata, T. Ogama, and A. Yosidome, “Transmission electron microscopy study of the environmental degradation in Ba2YCu3O7–y,” J. Appl. Phys. 68, 5283–5288 (1990).

    Article  Google Scholar 

  12. I. B. Bobylev, N. A. Zyuzeva, and E. P. Romanov, “Electrophysical properties and the structure of the YBa2Cu3Oy compound thermally restored after lowtemperature decomposition,” Phys. Solid State 52, 1338–1341 (2010).

    Article  Google Scholar 

  13. I. B. Bobylev, E. I. Kuznetsova, T. P. Krinitsina, N. A. Zyuzeva, S. V. Sudareva, and E. P. Romanov, “Restoration of the microstructure of YBa2Cu3O7–δ at T > 900°C after low-temperature decomposition,” Phys. Met. Metallogr. 54, 165–169 (2011).

    Article  Google Scholar 

  14. E. I. Kuznetsova, T. P. Krinitsina, I. B. Bobylev, N. A. Zyuzeva, and E. P. Romanov, “Microstructure of YBa2Cu3O6.8 after low-temperature annealing and subsequent restoration,” Phys. Met. Metallogr. 115, 793–799 (2014).

    Article  Google Scholar 

  15. I. B. Bobylev and N. A. Zyuzeva, “Effect of low-temperature treatment and subsequent high-temperature annealing on the critical current density of YBa2Cu3Oy,” Phys. Solid State 54, 1332–1336 (2012).

    Article  Google Scholar 

  16. I. B. Bobylev, E. G. Gerasimov, and N. A. Zyuzeva, “Effect of double annealing on the critical parameters of highly textured YBa2Cu3O6.9,” J. Exper. Theor. Phys. 115, 474–479 (2012).

    Article  Google Scholar 

  17. I. B. Bobylev, E. G. Gerasimov, and N. A. Zyuzeva, “Effect of low-temperature annealing on the critical parameters of highly textured YBa2Cu3Oy,” Phys. Solid State 54, 1741–1746 (2012).

    Article  Google Scholar 

  18. M. F. Imaev, D. B. Kabirova, V. A. Bukreeva, and R. G. Khazgaliev, “Effect of the initial-microstructure type on the formation of the basic texture of the hightemperature superconducting ceramics upon hot deformation,” Deform. Razrush. Mater., No. 1, 25–30 (2010).

    Google Scholar 

  19. M. F. Imayev, O. A. Kaibyshev, F. F. Musin, and M. O. Yamalova, “Dynamic recrystallization in YBa2Cu3Oх ceramics,” Mater. Sci. Forum 113–115, 585–590 (1993).

    Article  Google Scholar 

  20. M. F. Imaev, Structure and Properties of High-Temperature Superconducting Ceramics Subjected to Deformation and Thermal Treatments, Extended Abstract of Doctoral (Phys.-Math.) Dissertation (Ufa, 2010).

    Google Scholar 

  21. I. B. Bobylev, N. A. Zyuzeva, S. V. Sudareva, T. P. Krinitsina, L. N. Kuz’minykh, Yu. V. Blinova, and E. P. Romanov, “Phase diagram of the Ba2YCu3O6–Ba2YCu3O7 system below 400°C,” Phys. Met. Metallogr. 102, 517–521 (2006).

    Article  Google Scholar 

  22. Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, 79–86 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Bobylev.

Additional information

Original Russian Text © I.B. Bobylev, N.A. Zyuzeva, M.V. Degtyarev, V.P. Pilyugin, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 12, pp. 1273–1280.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, I.B., Zyuzeva, N.A., Degtyarev, M.V. et al. Effect of plastic deformation on the electrophysical properties and structure of YBa2Cu3O y ceramics subjected to low-temperature treatment. Phys. Metals Metallogr. 116, 1213–1220 (2015). https://doi.org/10.1134/S0031918X15100038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15100038

Keywords

Navigation