Skip to main content
Log in

Arms versus brachioles: Morphogenetic basis of similarity and differences in food-gathering appendages of pelmatozoan echinoderms

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The similarity in the skeleton model of the brachiolar food-gathering system of Blastozoa and the arm system of Crinozoa, including the apical growth with enantomorphous displacement of skeletal ele-ments, is explained by the primary organizing role of the radial ambulacral canals, which have the same branching model for ambulacral tentacles. The difference in the positions of brachioles and arms relative to the theca (exothecal and endothecal) is associated with the formation of the primary ambulacral tentacles directly on the body surface of the majority of Blastozoa, particularly, the closed vestibular cavity of crinoids. The supporting skeleton of brachioles arose as a branch of the plates covering the floor of the ambulacrum, if they were present, or formed similarly as a new formation outside the theca. The supporting skeleton of arms, brachials, developed as a result of the serial growth of plates positioned radially at the boundary of the aboral skeleton and tegmen formed due to the appearance of the vestibulum. The hypothesis of the inductive role of hydrocoel and its radial ambulacral appendages, which organize the arrangement of skeletal elements in the morphogenesis of echinoderms, enables the refinement of the principle of skeleton division into the axial and extraxial parts. The axial skeleton has a developmental model formed under the control of the radial ambu-lacral canals. Remaining skeleton is extraxial, subdivided into the symmetrized part arranged under direct or indirect organizing effect of the hydrocoel and unregulated, nonsymmetrized part, which is not connected initially with the influence of the hydrocoel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya, S., Omori, A., Tsurugaya, T., Hibino, T., Yamaguchi, M., Kuraishi, R., Kiyomoto, M., and Monokawa, T., Early stalked stages in ontogeny of the living isocrinid sea lily Metacrinus rotundus, Acta Zool. Stockholm, 2016, no. 97. pp. 102–116.

    Article  Google Scholar 

  • Barrois, J., Development de la comatule (C. mediterranea), Rec. Zool. Suisse, 1888, vol. 8, pp. 477–484.

    Google Scholar 

  • Beloussov, L.V., Osnovy obshchei embriologii (Fundamentals of General Embryology), Moscow: Mosk. Gos. Univ., 1993.

    Google Scholar 

  • Breimer, A., Recent crinoids, in Treatise on Invertebrate Paleontology: Part T. Echinodermata 2, Lawrence: Geol. Soc. Am.; Univ. Kansas Press, 1978, vol. 1, pp. 316–330.

    Google Scholar 

  • David, B. and Mooi, R., Major events in the evolution of echinoderms viewed by the light of embryology, in Echino-derms: San Francisco: Proceedings of the 9th International Echinoderm Conference, Mooi, R. and Telford, M., Eds., Rotterdam: A.A. Balkema, 1998, pp. 21–28.

    Google Scholar 

  • David, B. and Mooi, R., How Hox genes can shed light on the place of echinoderms among the deuterostomes, Evodevo, 2014, vol. 5, no. 22, (doi: 10.1186/2041-9139-5-22).

    Google Scholar 

  • Engle, S., Ultrastructure and development of the body cav-ities in Antedon bifida (Pennant, 1777) (Comatulida, Crinoidea), Unpublished PhD Thesis (http://edocs.fu-ber-lin.de/diss/receive/ FUDISS_thesis_000000040355).

  • Gilbert, S.F., Developmental Biology, 9th ed., 2010.

    Google Scholar 

  • Gislén, T., Echinoderm studies, Zool. Bidrag Fran Uppsala, 1924, vol. 9, pp. 13–16.

    Google Scholar 

  • Guensburg, T.E., Mooi, R., Sprinkle, J., David, B., and Lefebvre, B., Pelmatozoan arms from the mid-Cambrian of Australia: Bridging the gap between brachioles and brachi-als? Comment: There is no bridge, Lethaia, 2010, vol. 43, pp. 432–440.

    Google Scholar 

  • Hyman, L.H., The Invertebrates: Echinodermata, New York: McGraw-Hill, 1955.

    Google Scholar 

  • Ivanov, A.V., Monchadskii, A.S., Polyanskii, Yu.I., and Strelkov, A.A., Bol’shoi praktikum po zoologii bespozvonoch-nykh (Major Practical Training in Invertebrate Zoology), Moscow: Sovet. Nauka, 1946, part 2.

    Google Scholar 

  • Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespoz-vonochnykh zhivotnykh. Iglokozhie i polukhordovye (Com-parative Embryology of Invertebrates: Echinodermata and Hemichordata), Moscow: Nauka, 1978.

    Google Scholar 

  • Kammer, T.W., Bartels, C., and Ausich, W.I., Presumed postlarval pentacrinoids from the Lower Devonian Hunsruck Slate, Berlin, Germany: Lethaia, 2015.

    Google Scholar 

  • Kraus, Yu.A., Inductive activity of the posterior tip of plan-ula in the marine hydroid Dynamena pumila, Russ. J. Devel-opm. Biol., 2011, vol. 42, no. 2, pp. 92–100.

    Article  Google Scholar 

  • Mayorova, T., Kosevich, I., Dulin, N., Savina, E., and Kraus, Y., Organizer regions in marine colonial hydrozo-ans, Zoology, 2015, vol. 118, no. 2, pp. 89–101.

    Article  Google Scholar 

  • Meyer, D.L., Food and feeding mechanisms: Crinozoa, in Echinoderm Nutrition, Jangoux, M. and Lawrence, J.M., Eds., Rotterdam: Balkema, 1982, pp. 25–42.

    Google Scholar 

  • Mooi, R. and David, B., Skeletal homologies of echino-derms, Paleontol. Soc. Pap., 1997, vol. 3, pp. 305335.

    Google Scholar 

  • Mooi, R. and David, B., Radial symmetry, the ante-rior/posterior axis, and echinoderm Hox genes, Ann. Rev. Ecol. Evol. Syst., 2008, no. 39, pp. 43–62.

    Article  Google Scholar 

  • Nichols, D., Chapter 9. Functional morphology of the water-vascular system, in Physiology of Echinodermata, Boolootian, R.A., Ed., New YorkLondonSydney: Intersci. Publ., 1966, pp. 219–244.

    Google Scholar 

  • Parsley, R.L. and Mintz, L.W., North American Para-crinoidea: (Ordovician: Paracrinozoa, new Echinoder-mata), Bull. Am. Paleontol., 1975, vol. 68, no. 288, pp. 1115.

    Google Scholar 

  • Rozhnov, S.V., Hybocrinea, a new crinoid subclass, Dokl. Akad. Nauk SSSR, 1985a, vol. 280, no. 4, pp. 1012–1015.

    Google Scholar 

  • Rozhnov, S.V., Morphology, symmetry, and taxonomic position of hybocrinid crinoids, Paleontol. Zh., 1985b, no. 2, pp. 416.

    Google Scholar 

  • Rozhnov, S.V., Crookedness of the stem and crown of pel-matozoan echinoderms as resulting from different kinds of heterochrony, in Echinoderm Research, Rotterdam: Balkema, 1998, pp. 385–390.

    Google Scholar 

  • Rozhnov, S.V., Morphogenesis and evolution of crinoids and other pelmatozoan echinoderms in the Early Paleo-zoic, Paleontol. J., 2002, vol. 36, suppl. no. 6, pp. S525–S674.

    Google Scholar 

  • Rozhnov, S.V., Anteroposterior axis of echinoderms and displacement of the mouth in historical and individual development, Izv. Ross. Akad. Nauk, Ser. Biol., 2012a, no. 2, pp. 203–212.

    Google Scholar 

  • Rozhnov, S.V., Development of symmetry and asymmetry in the early evolution of the echinoderms, Paleontol. J., 2012b, vol. 46, no. 8, pp. 780–792.

    Article  Google Scholar 

  • Rozhnov, S.V., Symmetry of echinoderms: From initial bilat-erally asymmetric metamerism to pentaradiality, Natur. Sci., 2014, vol. 6, no. 4, pp. 171–183 (http://dx.doi.org/10.4236/ ns.2014.64021).

    Article  Google Scholar 

  • Rozhnov, S.V., Modularity and heterochronies in the evolu-tion of Metazoa: Paleontological aspect, Paleontol. J., 2015, vol. 49, no. 14, pp. 1546–1560.

    Article  Google Scholar 

  • Springer, F., On a Trenton echinoderm fauna at Kirk-field, Can. Geol. Surv. Mem., 1911, vol. 15, pp. 1–68.

    Google Scholar 

  • Springer, F., American Silurian crinoids, Smithson. Inst. Publ., 1926, no. 2871, pp. 12–39.

    Google Scholar 

  • Sprinkle, J., Morphology and Evolution of Blastozoan Echin-oderms, Harvard University Museum of Comparative Zool-ogy, Special Publication, 19–73.

  • Sprinkle, J. and Moore, R.C., 1978. Hybocrinida, in Trea-tise on Invertebrate Paleontology: Part T. Echinodermata 2, Lawrence: Geol. Soc. Am.; Univ. Kansas Press, 1978, vol. 2, pp. T564–T574.

    Google Scholar 

  • Sprinkle, J., Parsley, R.L., Zhao, Y., and Peng, J., Revision of lyracystid eocrinoids from the Middle Cambrian of South China and Western Laurentia, J. Paleontol., 2011, vol. 85, no. 2, pp. 250–255.

    Article  Google Scholar 

  • Sumrall C.D. A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms, in Echinoderms,. Harris, L.G., Bottger, S.A., Walker, C.W., and Lesser, M.P., Eds., London: Durham CRC Press, 2010, pp. 269–276.

    Google Scholar 

  • Thompson, W., On the embryology of Antedon rosaceus, Philosoph. Transact. R. Soc. London, 1865, vol. 155, pp. 513–544.

    Article  Google Scholar 

  • Ubaghs, G., Skeletal morphology of fossil crinoids, in Trea-tise on Invertebrate Paleontology: Part T. Echinodermata 2, Lawrence: Geol. Soc. Am.; Univ. Kansas Press, 1978, vol. 1, pp. T58–T216.

    Google Scholar 

  • Wolpert, L. and Tickle, Ch., Principles of Development, 4th ed., Oxford: Oxford Univ. Press, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rozhnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhnov, S.V. Arms versus brachioles: Morphogenetic basis of similarity and differences in food-gathering appendages of pelmatozoan echinoderms. Paleontol. J. 50, 1598–1609 (2016). https://doi.org/10.1134/S0031030116140069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030116140069

Keywords

Navigation