Skip to main content
Log in

Optical spectroscopic studies of titanium plasma produced by an Nd : YAG laser

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We present optical emission characteristics of the titanium plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser using laser induced breakdown spectroscopy (LIBS). The experimentally observed line profiles of neutral titanium (Ti I) have been used to extract the electron temperature (T e ) using the Boltzmann plot method. The electron number density (N e ) is calculated using the Stark broadening profile of 368.73 nm spectral line. Beside we have studied the spatial variation of electron temperature and number density as a function of laser energy for titanium plasma by placing the target material in air (at atmospheric pressure). We have determined the electron temperature and the electron number density along the axial position of the plasma plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laser-Induced Plasmas and Applications, Ed. by L. J. Radziemski and D. A. Cremers (Marcel Dekker, New York, 1989).

    Google Scholar 

  2. Laser Ablation: Mechanisms and Applications, Ed. by J. C. Miller and R. F. Haglund, Jr. (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  3. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, New York, 2006).

    Book  Google Scholar 

  4. A. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  5. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007).

    Google Scholar 

  6. J. Hermann, C. Boulmer-Leborgne, I. N. Mihailescu, and B. Dubreuil, J. Appl. Phys. 73(3), 1091 (1993).

    Article  ADS  Google Scholar 

  7. M. L. De Giorgi, J. Hermann, A. Luches, A. Perrone, and L. Renna, Appl. Phys. A 58, 595 (1994).

    Article  ADS  Google Scholar 

  8. V. Henc-Bartolic, Z. Andreic, and H. J. Kunze, Physica Scrip. 50, 368 (1994).

    Article  ADS  Google Scholar 

  9. J. Hermann, A. L. Thomann, C. Boulmer-Leborgne, B. Dubreuil, M. L. De Giorgi, A. Perrone, A. Luches, and I. N. Mihailescu, J. Appl. Phys. 77, 2928 (1995).

    Article  ADS  Google Scholar 

  10. X. T. Wang, B. Y. Man, G. T. Wang, Z. Zhao, Y. Liao, B. Z. Xu, Y. Y. Xia, L. M. Mei, and X. Y. Hu, J. Appl. Phys. 80, 1783 (1996).

    Article  ADS  Google Scholar 

  11. B. Y. Man, Appl. Phys. B 67, 241 (1998).

    Article  ADS  Google Scholar 

  12. J. Hermann, C. Boulmer-Leborgne, and D. Hong, J. Appl. Phys. 83, 691 (1998).

    Article  ADS  Google Scholar 

  13. J. Hermann, C. Vivien, A. P. Carricato, and C. Boulmer-Leborgne, Appl. Surf. Sci. 127–129, 645 (1998).

    Article  Google Scholar 

  14. A. De Giacom, V. A. Shakhatovc, and O. D. Pascale, Spectrochimica Acta Part B 56, 753 (2001).

    Article  Google Scholar 

  15. A. De Giacomo, V. A. Shakhatovc, G. S. Senesic, and S. Orlandod, Spectrochimica Acta Part B 56, 1459 (2001).

    Article  Google Scholar 

  16. A. De Giacomo, Spectrochimica Acta Part B 58, 71 (2003).

    Article  ADS  Google Scholar 

  17. E. Restrepo and A. Devia, J. Vac. Sci. Technol. A 22, 377 (2004).

    Article  ADS  Google Scholar 

  18. D. Grojo and J. Hermann, J. Appl. Phys. 97, 063306 (2005).

    Article  ADS  Google Scholar 

  19. A. De Giacomo, M. Dell’Aglio, A. Santagata, and R. Teghil, Spectrohim. Acta Part B 60, 935 (2005).

    Article  ADS  Google Scholar 

  20. V. J. Dann, M. V. Mathew, V. P. N. Nampoori, C. P. G. Allahan, V. M. Nandakumaran, and P. Radhakrishnan, Plasma Sci. and Tech. 9(4), 456 (2007).

    Article  ADS  Google Scholar 

  21. A. A. I. Khalila, M. Richardson, L. Johnsond, and M. A. Gondal, Laser Phys. 19(10), 1981 (2009).

    Article  ADS  Google Scholar 

  22. M. Cirisan, J. M. Jouvard, L. Lavisse, L. Hallo, and R. Oltra, J. Appl. Phys. 109, 103301 (2011).

    Article  ADS  Google Scholar 

  23. M. Salik, M. Hanif, and M. A. Baig, IEEE Trans. Plasma Sci. 36(9), (2011).

  24. M. Hanif, M. Salik, and M. A. Baig, J. Plasma Sci. Tech. 13(2), 129 (2011).

    Article  ADS  Google Scholar 

  25. M. Hanif, M. Salik, and M. A. Baig, Opt. Las. Eng. 49(12), 1456 (2011).

    Article  Google Scholar 

  26. D. Lacroix, G. Jeandel, and C. Boudot, J. Appl. Phys. 81, 6599 (1997).

    Article  ADS  Google Scholar 

  27. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  28. C. E. Moore, Atomic Energy Levels, NBS Circular No. 467, Washington DC (1971).

  29. NIST Atomic Spectra Database, http://physics.nist.gov. Kurucz Output Atomic Spectra Line Data-base from R. L. Kurucz’s CD-ROM 23.

  30. R. W. P. McWhirter, Plasma Diagnostic Techniques, Ed. by R. H. Huddleston and S. L. Leonard (Academic, New York, 1965).

    Google Scholar 

  31. O. Barthelemy, J. Margot, S. Laville, F. Vidal, M. Chaker, T. W. Johnston, B. Le Drogoff, and M. Sabsabi, Appl. Spectrosc. 59(4), 529 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hanif.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanif, M., Salik, M. & Baig, M.A. Optical spectroscopic studies of titanium plasma produced by an Nd : YAG laser. Opt. Spectrosc. 114, 7–14 (2013). https://doi.org/10.1134/S0030400X13010116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13010116

Keywords

Navigation