Skip to main content
Log in

Attenuation, scattering, and depolarization of light by gold nanorods with silver shells

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Gold nanoparticles with silver nanoshells are obtained by synthesizing gold nanorods in a growing solution containing cetyltrimethylammonium bromide, subsequent separation in a concentration gradient of glycerol, and reduction of silver nitrate by ascorbic acid under alkaline conditions in the presence of polyvinylpyrrolidone. The formation of silver nanoshells was monitored by the shift of plasmon resonances of extinction and differential light scattering, by the appearance of characteristics peaks of silver in the energy dispersive X-ray (EDX) spectra of samples, by the data of transmission electron microscopy, and by visual changes in the color of colloids. The spectrum of the intensity ratio of the co- and cross-polarized compo- nents of light scattered by gold-silver nanorods is measured for the first time, and it is observed that the maximum is shifted by 80–100 nm compared to previously published spectra of gold nanorods (Khlebtsov et al., J. Phys. Chem. C 112, 12760 (2008)). The extinction and light scattering spectra are calculated by the method of separation of variables using the model of a confocal two-layer spheroid and these calculations are found to agree with spectral measurements. A method for determining the thickness of a silver nanolayer by the spectral shift of an extinction longitudinal resonance is described. The obtained data of optical spectroscopy and transmission electron microscopy and estimations of the mass of the deposited metal show that the aver-age thickness of the silver layer varies from 0.12 to 4 nm as the Ag/Au ratio changes from 2/80 to 90/80 μg/μg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pelton, J. Aizpurua, and G. Bryant, Las. Photon. Rev. 2, 136 (2008).

    Article  Google Scholar 

  2. N. G. Khlebtsov, Kvantovaya Élektron. (Moscow) 38(6), 504 (2008).

    Article  Google Scholar 

  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Google Scholar 

  4. L. M. Liz-Marzán, Langmuir 22, 32 (2006).

    Article  Google Scholar 

  5. B. N. Khlebtsov, V. P. Zharov, A. G. Melnikov, V. V. Tuchin, and N. G. Khlebtsov, Nanotecnology 17, 5267 (2006).

    Google Scholar 

  6. J. Zhao, A. O. Pinchuk, J. M. McMahon, et al., Acc. Chem. Res. 41, 1710 (2008).

    Article  Google Scholar 

  7. Colloidal Gold: Principles, Methods, and Applications, Ed. by M. A. Hayat (Academic, San Diego, 1989, 1990).

    Google Scholar 

  8. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).

    Article  Google Scholar 

  9. C. J. Murphy, T. K. Sau, A. M. Gole, et al., J. Phys. Chem. B 109, 13857 (2005).

    Article  Google Scholar 

  10. A. V. Alekseeva, V. A. Bogatyrev, B. N. Khlebtsov, A. G. Mel’nikov, L. A. Dykman, and N. G. Khlebtsov, Kolloidn. Zh. 68(6), 725 (2006).

    Google Scholar 

  11. L. R. Hirsch, A. M. Gobin, A. R. Lowery, et al., Ann. Biomed. Eng. 34, 15 (2006).

    Article  Google Scholar 

  12. J. Chen, B. Wiley, Zh.-Y. Li, et al., Adv. Mater. 17, 2255 (2005).

    Article  Google Scholar 

  13. N. R. Jana, L. Gearheart, and C. J. Murphy, J. Phys. Chem. B 105, 4065 (2001).

    Article  Google Scholar 

  14. B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15, 1957 (2003).

    Article  Google Scholar 

  15. B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, J. Phys. Chem. C 112, 12760 (2008).

    Article  Google Scholar 

  16. B. P. Khanal and E. R. Zubarev, J. Am. Chem. Soc. 130, 12634 (2008).

    Article  Google Scholar 

  17. C. S. Ah, S. D. Hong, and D. J. J. Jang, Phys. Chem. B 105, 7871 (2001).

    Article  Google Scholar 

  18. C. C. Huang, Z. Yang, and H. T. Chang, Langmuir 20, 6089 (2004).

    Article  Google Scholar 

  19. M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B 108, 5882 (2004).

    Article  Google Scholar 

  20. J. Becker, I. Zins, A. Jaka, Yu. Khalavka, O. Schubert, and C. Sönnichsen, Nano Lett. 8, 1719 (2008).

    Article  ADS  Google Scholar 

  21. B. N. Khlebtsov, V. A. Khanadeev, V. A. Bogatyrev, L. A. Dykman and N. G. Khlebtsov, Ross. Nanotekhnol. 4(7–8), 53 (2009).

    Google Scholar 

  22. K. C. Toussaint, Jr., M. Liu, M. Pelton, et al., Opt. Express 15, 12017 (2007).

    Article  ADS  Google Scholar 

  23. M. Li, Z. S. Zhang, X. Zhang, et al., Opt. Express 16, 14288 (2008).

    Article  ADS  Google Scholar 

  24. J. D. Driskell, S. Shanmukh, Y. Liu, et al., J. Phys. Chem. C 112, 895 (2008).

    Article  Google Scholar 

  25. R. Kullock, W. R. Hendren, A. Hille, et al., Opt. Express 16, 21671 (2008).

    Article  ADS  Google Scholar 

  26. J. Aaron, E. de la Rosa, K. Travis, et al., Opt. Express 16, 2153 (2008).

    Article  ADS  Google Scholar 

  27. J. Sung, M. Sukharev, E. M. Hicks, et al., J. Phys. Chem. C 112, 3252 (2008).

    Article  Google Scholar 

  28. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, and B. N. Khlebtsov, J. Phys. Chem. B 109, 13578 (2005).

    Article  Google Scholar 

  29. K. Drozdowicz-Tomsia, F. Xie, N. Calander, et al., Chem. Phys. Lett. 468, 69 (2009).

    Article  ADS  Google Scholar 

  30. Z. Gryczynski, J. Lukomska, J. R. Lakowicz, et al., Chem. Phys. Lett. 421, 189 (2006).

    Article  ADS  Google Scholar 

  31. N. Calander, I. Gryczynski, and Z. Gryczynski, Chem. Phys. Lett. 434, 326 (2007).

    Article  ADS  Google Scholar 

  32. S. Klitgaard, T. Shtoyko, N. Calander, et al., Chem. Phys. Lett. 443, 1 (2007).

    Article  ADS  Google Scholar 

  33. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, and Ya. M. Krasnov, J. Quant. Spectrosc. Radiat. Transfer 89, 133 (2004).

    Article  ADS  Google Scholar 

  34. X. Xu and M. Cortie, Adv. Funct. Mater. 16, 2170 (2006).

    Article  Google Scholar 

  35. S. Eustis and M. A. El-Sayed, J. Appl. Phys. 100, 044324 (2006).

    Article  ADS  Google Scholar 

  36. W. Bazhan, K. Kolwas, and M. Kolwas, Opt. Commun. 211, 171 (2002).

    Article  ADS  Google Scholar 

  37. V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, J. Quant. Spectrosc. Radiat. Transfer 79–80, 599 (2003).

    Article  Google Scholar 

  38. K.-S. Lee and M. A. El-Sayed, J. Phys. Chem. B 109, 20331 (2005).

    Article  Google Scholar 

  39. S. W. Prescott and P. Mulvaney, J. Appl. Phys. 99, 123504 (2006).

    Article  ADS  Google Scholar 

  40. A. Moroz, J. Phys. Chem. C 112, 10641 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Khlebtsov.

Additional information

Original Russian Text © B.N. Khlebtsov, V.A. Khanadeev, N.G. Khlebtsov, 2010, published in Optika i Spektroskopiya, 2010, Vol. 108, No. 1, pp. 64–74.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlebtsov, B.N., Khanadeev, V.A. & Khlebtsov, N.G. Attenuation, scattering, and depolarization of light by gold nanorods with silver shells. Opt. Spectrosc. 108, 59–69 (2010). https://doi.org/10.1134/S0030400X10010108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X10010108

Keywords

Navigation