Skip to main content
Log in

Introgression of nuclear and mitochondrial DNA markers of Mus musculus musculus to aboriginal populations of wild mice from Central Asia (M. m. wagneri) and South Siberia (M. m. gansuensis)

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Variability of the nucleotide sequences of the second intron of the b1-chain of hemoglobin (Hbb-b1) and complete control region of mitochondrial DNA (D-loop) was studied in aboriginal and synanthropic populations of M. m. wagneri from Central Asia and M. m. gansuensis from South Siberia. A difference in the frequency of the Hbbw1 hemoglobin variant for natural and urban populations of mice was shown. All mice from natural habitats of studied areas have musculus type of mtDNA. Apparently, the substitution of taxon-specific mitochondrial haplotypes of wagneri, and gansuensis might occur due to the absorbing hybridization with nominate subspecies musculus, which is consistent with the results on nuclear DNA (Hbb-b1 gene) obtained in this work. Two differentiated haplogroups among aboriginal subspecies wagneri (d = 0.01), one of which included house mice from Turkmenistan, were discovered for the first time. This may indicate mtDNA introgression from synanthropic forms of Turkmenistan into natural populations of Kazakhstan mice. The type of mtDNA typical for the castaneus subspecies was detected in two individuals from the natural habitat of Kazakhstan and Turkmenistan; it had not been encountered in Central Asia before. It has been suggested that the gene flow of nuclear and mitochondrial genomes in microevolution processes in M. musculus is directed from the synanthropic forms towards wild populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zagorodniuk I.V. 1996. Taxonomic revision and diagnostics of the rodent genus Mus from eastern Europe: 1. Vestn. Zool. 30, 28–46.

    Google Scholar 

  2. Lavrenchenko L.A. 1994. Analysis of craniometric characters of house mice Mus musculus sensu lato (Rodentia, Muridae): A multivariate approach. Zool. Zh. 73, 169–177.

    Google Scholar 

  3. Korobitsyna K.V., Yakimenko L.V. 2004. Role and place of wagneri-like house mouse form (Rodentia, Muridae) in the fauna of Russia and neighboring countries. Zool. Zh. 83, 1018–1030.

    Google Scholar 

  4. Gromov I.M., Erbaeva M.A. 1995. Mlekopitayushchie fauny Rossii i sopredel’nykh territorii. Zaitseobraznye i gryzuny (Mammals of the Fauna of Russia and Bordering Territories: Lagomorphs and Rodents). St. Petersburg: Zool. Inst. Ross. Akad. Nauk.

    Google Scholar 

  5. Fortuyn D.A.B. 1931. Mus musculus and Mus wagneri compared: 1. The number of tailrings. Genetics. 16, 160–167.

    CAS  PubMed  Google Scholar 

  6. Marshall J. 1998. Identification and Scientific Names of Eurasian House Mice and Their European Allies, Subgenus Mus (Rodentia, Muridae). Springfield, VA: Kinko’s.

    Google Scholar 

  7. Yakimenko L.V., Korobitsyna K.V., Frisman L.V., et al. 2003. Cytogenetics and systematics of house mice in Russia and neighboring countries. In: Problemy evolyutsii (Problems of Evolution). Vladivostok: Dal’nauka, pp. 62–89.

    Google Scholar 

  8. Frisman L.V. 1988. Protein polymorphism of house mice: A look at the systematics and settlement centers. In: Evolyutsionnye issledovaniya. Vavilovskie temy (Evolutionary Studies: Vavilov’s Themes). Vladivostok: Dal’nevost. Otd. Akad. Nauk SSSR, pp. 94–109.

    Google Scholar 

  9. Yonekawa H., Tsuda K., Tsuchiya K., et al. 2003. Genetic diversity, geographic distribution and evolutionary relationships of Mus musculus subspecies based on polymorphisms of mitochondrial DNA. In: Problemy evolyutsii (Problems of Evolution), vol. 5. Kryukov A.P., Yakimenko L.V. Eds. Vladivostok: Dal’nauka, pp. 90–108.

    Google Scholar 

  10. Spiridonova L.N., Korobitsyna K.V., Yakimenko L.V., Bogdanov A.S. 2008. Genetic differentiation of subspecies of the house mouse Mus musculus and their taxonomic relationships inferred from RAPD-PCR data. Russ. J. Genet. 44, 732–739.

    Article  CAS  Google Scholar 

  11. Kawashima T., Miyashita N. B. Wang Ch., et al. 1991. A new haplotype of the β-globin gene complex, Hbb w1 in Chinese wild mouse. Jpn. J. Genet. 6 491–500.

    Article  Google Scholar 

  12. Ueda Y., Miyashita N., Imai K., et al. 1999. Nucleotide sequences of the mouse globin beta gene cDNAs in a wild derived new haplotype Hbb w1. Mammal. Genome. 10, 879–882.

    Article  CAS  Google Scholar 

  13. Kawashima T., Miyashita K., Tsuchiya K., et al. 1995. Geographical distribution of the Hbb haplotypes in the Mus musculus subspecies in Eastern Asia. Jpn. J. Genet. 70, 17–23.

    Article  CAS  PubMed  Google Scholar 

  14. Frisman L.V., Korobitsyna K.V., Yakimenko L.V., Munteanu A.I., Moriwaki K. 2011. Genetic variability and the origin of house mouse from the territory of Russia and neighboring countries. Russ. J. Genet. 47, 590–602.

    Article  CAS  Google Scholar 

  15. Maniatis T., Fritsch E.F., Sambrook J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  16. Sato J.J., Tsuru Y., Hirai K., et al. 2006. Further evidence for recombination between mouse hemoglobin beta b1 and b2 genes based on the nucleotide sequences of intron, UTR and intergenic spacer regions. Genes Genet. Syst. 81, 201–209.

    Article  CAS  PubMed  Google Scholar 

  17. Prager E.M., Sage R.D., Gyllensten U., et al. 1993. Mitochondrial DNA sequence diversity and the colonization of Scandinavia by house mice from East Holstein. Biol. J. Linn. Soc. 50, 85–122.

    Article  Google Scholar 

  18. Boneld J.K., Smith K.F., Staden R. 1995. A new DNA sequence assembly program. Nucleic Acids Res. 23, 4992–4999.

    Article  Google Scholar 

  19. Tamura K., Peterson D., Peterson N., et al. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  Google Scholar 

  20. Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25, 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  21. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39, 783–791.

    Article  Google Scholar 

  22. Bandelt H.-J., Forster P., Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.

    Article  CAS  PubMed  Google Scholar 

  23. Rogers A.R., Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569.

    CAS  PubMed  Google Scholar 

  24. Kotenkova E.V. 2002. Hybridization of synantropic house mice species and its role in evolution. Usp. Sovrem. Biol. 122, 580–593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Spiridonova.

Additional information

Original Russian Text © L.N. Spiridonova, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 1, pp. 89–98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiridonova, L.N. Introgression of nuclear and mitochondrial DNA markers of Mus musculus musculus to aboriginal populations of wild mice from Central Asia (M. m. wagneri) and South Siberia (M. m. gansuensis). Mol Biol 48, 75–83 (2014). https://doi.org/10.1134/S0026893314010142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314010142

Keywords

Navigation