Skip to main content
Log in

Comparative activity of several promoters in driving NIS expression in melanoma cells

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Targeted drug delivery systems are special importance for developing gene therapeutic drugs that recognize and eliminate tumor cells. It is desirable that therapeutic genes be expressed predominantly in tumor cells after their targeted delivery into the tumor. Hence, the distribution of the expression product through various tissues should be studied when testing a therapeutic gene in vivo. The sodium iodide symporter (NIS) is attractive as a reporter because its tissue level is easy to quantify by noninvasive imaging methods. Therapeutic gene expression in tumor cells is achieved using various promoters, including strong nonspecific promoters; moderately active tissue-specific promoters; and tumor-specific promoters, which function in a broad range of tumor cells, but have low activity. The relationship between the promoter strength and reporter NIS activity is still unclear. The reporter gene was used to test three promoters types for activity in melanoma cells. The functional activity of NIS expressed from a cloned gene was compared for the three promoters types. Although the promoters greatly varied in strength, only minor changes were observed for NIS functional activity. A relatively weak melanoma-specific promoter ensured a high NIS activity in melanoma cells. Weaker tumorspecific promoters determined a high NIS activity only in some cells of the melanoma origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung J.-K. 2002. Sodium iodide symporter: Its role in nuclear medicine. J. Nucl. Med. 43, 1188–1200.

    CAS  PubMed  Google Scholar 

  2. Dohan O., Vieja A.D.E.L.A., Paroder V., et al. 2003. Regulation, and medical significance. Endocrine Rev. 24, 48–77.

    Article  CAS  Google Scholar 

  3. Perron B., Rodriguez A.M., Leblanc G., Pourcher T. 2001. Cloning of the mouse sodium iodide symporter and its expression in the mammary gland and other tissues. J. Endocrinol. 170, 185–196.

    Article  CAS  PubMed  Google Scholar 

  4. Dai G., Levy O. 1996. Cloning and characterization of the thyroid iodide transporter. Nature. 379, 458–460.

    Article  CAS  PubMed  Google Scholar 

  5. Shimura H., Haraguchi K., Miyazaki A., et al. 1997. Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I symporter gene. Endocrinology. 138, 4493–4496.

    CAS  PubMed  Google Scholar 

  6. Riesco-Eizaguirre G., Santisteban P. 2006. A perspective view of sodium iodide symporter research and its clinical implications. Eur. J. Endocrinol. 155, 495–512.

    Article  CAS  PubMed  Google Scholar 

  7. Baril P., Martin-Duque P., Vassaux G. 2010. Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: Applications in biotherapy. Br. J. Pharmacol. 159, 761–771.

    Article  CAS  PubMed  Google Scholar 

  8. Terrovitis J., Kwok K.F., Lautamäki R., et al. 2008. Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J. Am. Coll. Cardiol. 52, 1652–1660.

    Article  PubMed  Google Scholar 

  9. Barton K.N., Stricker H., Brown S.L., et al. 2008. Phase I study of noninvasive imaging of adenovirus-mediated gene expression in the human prostate. Mol. Ther. 16, 1761–1769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Barton K.N., Stricker H., Elshaikh M.A., et al. 2011. Feasibility of adenovirus-mediated hNIS gene transfer and 131I radioiodine therapy as a definitive treatment for localized prostate cancer. Mol. Ther. 19, 1353–1359.

    Article  CAS  PubMed  Google Scholar 

  11. Riesco-Eizaguirre G., De la Vieja A., Rodriguez I., et al. 2011. Telomerase-driven expression of the sodium iodide symporter (NIS) for in vivo radioiodide treatment of cancer: a new broad-spectrum NIS-mediated antitumor approach. J. Clin. Endocrinol. Metab. 96, E1435–E1443.

    Article  CAS  PubMed  Google Scholar 

  12. Huang R., Zhao Z., Ma X., et al. 2011. Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter. Cancer Gene Ther. 18, 144–152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chomczynski P., Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  CAS  PubMed  Google Scholar 

  14. Weiss S.J., Philp N.J., Grollman E.F. 1984. Iodide transport in a continuous line of cultured cells from rat thyroid. Endocrinology. 114, 1090–1098.

    Article  CAS  PubMed  Google Scholar 

  15. Ambrosini G., Adida C., Sirugo G., Altieri D.C. 1998. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J. Biol. Chem. 273, 11177–11182.

    Article  CAS  PubMed  Google Scholar 

  16. Yang L., Cao Z., Yan H., Wood W.C. 2003. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: Implication for cancer specific therapy. Cancer Res. 63, 6815–6824.

    CAS  PubMed  Google Scholar 

  17. Mityaev M.V., Kopantzev E.P., Buzdin A.A., et al. 2008. Functional significance of a putative sp1 transcription factor binding site in the survivin gene promoter. Biochemistry (Moscow). 73, 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  18. Bao R., Connolly D.C., Murphy M., et al. 2002. Activation of cancer-specific gene expression by the survivin promoter. J. Natl. Cancer Inst. 94, 522–528.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu Z.B., Makhija S.K., Lu B., et al. 2004. Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther. 11, 256–262.

    Article  CAS  PubMed  Google Scholar 

  20. Konopka K., Spain C., Yen A., et al. 2009. Correlation between the levels of survivin and survivin promoter-driven gene expression in cancer and non-cancer cells. Cell. Mol. Biol. Lett. 14, 70–89.

    Article  CAS  PubMed  Google Scholar 

  21. Li F., Altieri D.C. 1999. The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res. 59, 3143–3151.

    CAS  PubMed  Google Scholar 

  22. Kyo S., Takakura M., Fujiwara T., Inoue M. 2008. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci. 99, 1528–1538.

    Article  CAS  PubMed  Google Scholar 

  23. Gu J., Fang B. 2003. Telomerase promoter-driven cancer gene therapy. Cancer Biol. Ther. 2, S64–S70.

    CAS  PubMed  Google Scholar 

  24. Kim S.H., Chung H.K., Kang J.H., et al. 2008. Tumortargeted radionuclide imaging and therapy based on human sodium iodide symporter gene driven by a modified telomerase reverse transcriptase promoter. Hum. Gene Ther. 19, 951–957.

    Article  CAS  PubMed  Google Scholar 

  25. Takakura M., Kyo S., Kanaya T., et al. 1999. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res. 59, 551–557.

    CAS  PubMed  Google Scholar 

  26. Davis J.J., Wang L., Dong F., et al. 2006. Oncolysis and suppression of tumor growth by a GFP-expressing oncolytic adenovirus controlled by an hTERT and CMV hybrid promoter. Cancer Gene Ther. 13, 720–723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wirth T., Zender L., Schulte B., et al. 2003. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res. 63, 3181–3188.

    CAS  PubMed  Google Scholar 

  28. Hearing V.J., Tsukamoto K. 1991. Enzymatic control of pigmentation in mammals. FASEB J. 5, 2902–2909.

    CAS  PubMed  Google Scholar 

  29. Van Groningen J.J., Bloemers H.P., Swart G.W. 1995. Identification of melanoma inhibitory activity and other differentially expressed messenger RNAs in human melanoma cell lines with different metastatic capacity by messenger RNA differential display. Cancer Res. 55, 6237–6243.

    PubMed  Google Scholar 

  30. Perez R.P., Zhang P., Bosserhoff A.K., et al. 2000. Expression of melanoma inhibitory activity in melanoma and nonmelanoma tissue specimens. Hum. Pathol. 31, 1381–1388.

    Article  CAS  PubMed  Google Scholar 

  31. Hart I.R., Vile R.G. 1994. Targeted therapy for malignant melanoma. Curr. Opin. Oncol. 6, 221–225.

    Article  CAS  PubMed  Google Scholar 

  32. Pleshkan V.V., Alekseenko I.V., Zinovyeva M.V., et al. 2011. Promoters with cancer cell-specific activity for melanoma gene therapy. Acta Naturae. 3, 13–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bosserhoff A.K., Kondo S., Moser M., et al. 1997. Mouse CD-RAP/MIA gene: Structure, chromosomal localization, and expression in cartilage and chondrosarcoma. Dev. Dynam. 208, 516–525.

    Article  CAS  Google Scholar 

  34. Bosserhoff A.K., Kaufmann M., Kaluza B., et al. 1997. Melanoma-inhibiting activity, a novel serum marker for progression of malignant melanoma. Cancer Res. 57, 3149–3153.

    CAS  PubMed  Google Scholar 

  35. Rothfels H., Paschen A., Schadendorf D. 2003. Evaluation of combined gene regulatory elements for transcriptional targeting of suicide gene expression to malignant melanoma. Exp. Dermatol. 12, 799–810.

    Article  CAS  PubMed  Google Scholar 

  36. Schoensiegel F., Paschen A., Sieger S., et al. 2004. MIA (melanoma inhibitory activity) promoter mediated tissue-specific suicide gene therapy of malignant melanoma. Cancer Gene Ther. 11, 408–418.

    Article  CAS  PubMed  Google Scholar 

  37. Mitrofanova E., Unfer R., Vahanian N., Link C., 2006. Rat sodium iodide symporter allows using lower dose of 131I for cancer therapy. Gene Ther. 13, 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  38. Vadysirisack D., Shen D., Jhiang S. 2006. Correlation of Na+/I symporter expression and activity: Implications of Na+/I symporter as an imaging reporter gene. J. Nucl. Med. 47, 182–190.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kuzmich.

Additional information

Original Russian Text © A.I. Kuzmich, E.P. Kopantsev, T.V. Vinogradova, E.D. Sverdlov, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 1, pp. 142–152.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmich, A.I., Kopantsev, E.P., Vinogradova, T.V. et al. Comparative activity of several promoters in driving NIS expression in melanoma cells. Mol Biol 48, 121–129 (2014). https://doi.org/10.1134/S0026893314010075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314010075

Keywords

Navigation