Skip to main content
Log in

Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The composition of microbial communities of acid mine drainage (AMD) in two wells drilled in the terrace of the Sherlovaya Gora open-cast polymetallic ores mine (Eastern Siberia) was studied. While drainage water filling two wells, ShG14-1 and ShG14-8, had similar values of pH (2.6), Eh (447–494 mV), and temperature (6.5°C), the water in the first well contained more metals and sulfate. The water in ShG14-1 and ShG14-8 contained, respectively, 1898 and 434 mg/L of iron, 734 and 49 mg/L of manganese, 81 and 7 mg/L of copper, 3597 and 787 mg/L of zinc, and 15990 and 3632 mg/L of sulfate. Molecular analysis of the microbial communities was performed using pyrosequencing of the 16S rRNA gene fragments. The ShG14-8 microbial community included such bacterial taxa typically found in AMD sites as Gallionella (38.8% of total 16S rRNA gene sequences), Ferrovum (4.4%), Acidiphilium (9.1%), Acidisphaera (8.2%), Acidithiobacillus (7.2%), and Leptospirillum (4.6%). In the ShG14-1 sample with higher content of metals, strict acidophiles Acidithiobacillus (16.0%) and Leptospirillum (25.4%) were more abundant, while Gallionella, Ferrovum, Acidiphilium and Acidisphaera were almost absent. Ferrimicrobium (16.8%) and Sulfobacillus (1.4%) were detected in ShG14-1 but not in ShG14-8. Thus, the increase in concentration of metals in the acid mine drainage water under the same value of total acidity substantially altered the composition of the microbial community, preventing the development of “moderate” alpha- and beta-proteobacterial acidophiles, so that the community was dominated by the bacteria characteristic of the extremely acidic drainage waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, I., Chertkov, O., Chen, A., Saunders, E., Lapidus, A., Nolan, M., Lucas, S., Hammon, N., Deshpande, S., Cheng, J.F., Han, C., Tapia, R., Goodwin, L.A., Pitluck, S., Liolios K., et al., Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)), Stand. Genomic Sci., 2012, vol. 6, pp. 1–13.

    PubMed  PubMed Central  Google Scholar 

  • Bacelar-Nicolau, P. and Johnson, D.B., Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures, Appl. Environ. Microbiol., 1999, vol. 65, pp. 585–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, B.J. and Banfield, J.F., Microbial communities in acid mine drainage, FEMS Microbiol. Ecol., 2003, vol. 44, pp. 139–152.

    Article  CAS  PubMed  Google Scholar 

  • Baker, B.J., Comolli, L.R., Dick, G.J., Hauser, L.J., Hyatt, D., Dill, B.D., Land, M.L., Verberkmoes, N.C., Hettich, R.L., and Banfield, J.F., Enigmatic, ultrasmall, uncultivated archaea, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 8806–8811.

    Article  CAS  PubMed  Google Scholar 

  • Banks, D., Karnachuk, O.V., Kadnikov, V.V., Watts, M., Boyce, A., Ivasenko, D.A., Filenko, R.A., Danilova, E.V., Pimenov, N.V., and Gundersen, P., Hydrochemical data report from sampling of polymetallic mines in Zabaikalskii kray, eastern Siberia, Russian Federation, Norges Geologiske Undersøkelse Report, 2014. 2014.035.

    Google Scholar 

  • Behnke, A., Engel, M., Christen, R., Nebel, M., Klein, R.R., and Stoeck, T., Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions, Environ. Microbiol., 2011, vol. 13, pp. 340–349.

    Article  CAS  PubMed  Google Scholar 

  • Bruneel, O., Duran, R., Casiot, C., Elbaz-Poulichet, F., and Personne, J.C., Diversity of microorganisms in Fe-Asrich acid mine drainage waters of Carnoules, France, Appl. Environ. Microbiol., 2006, vol. 72, pp. 551–556.

    Article  CAS  Google Scholar 

  • Chen, L.X., Hu, M., Huang, L.N., Hua, Z.S., Kuang, J.L., Li, S.J., and Shu, W.S., Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage, ISME J., 2015, vol. 9, pp. 1579–1592.

    Article  PubMed  Google Scholar 

  • Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., and Tiedje J.M., The Ribosomal Database Project: improved alignments and new tools for rRNA analysis, Nucl. Acids Res., 2009, vol. 37, pp. 141–145.

    Article  Google Scholar 

  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R., UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, 2011, vol. 27, pp. 2194–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabisch, M., Beulig, F., Akob, D.M., and Kusel, K., Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations, Front. Microbiol., 2013, vol. 4, p. 390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallberg, K.B., Coupland, K., Kimura, S., and Johnson, D.B., Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities, Appl. Environ. Microbiol., 2006, vol. 72, pp. 2022–2030.

    CAS  PubMed  Google Scholar 

  • Hallberg, K.B., González-Toril, E., and Johnson, D.B., Acidithiobacillus ferrivorans,sp. nov.; facultatively anaerobic, psychrotolerant iron-,and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments, Extremophiles, 2010, vol. 14, pp. 9–19.

    CAS  PubMed  Google Scholar 

  • He, Z., Xiao, S., Xie, X., Zhong, H., Hu, Y., Li, Q., Gao, F., Li, G., Liu, J., and Qiu, G., Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine, Extremophiles, 2007, vol. 11, pp. 305–314.

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi, A., Matsuzawa, Y., Kanbe, T., and Wakao, N., Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  • Holanda, R., Hedrich, S., Falagán, C., Nancucheo, I., Dall’Agnol, H., Grail, B.M., and Johnson, D.B., Characteristics of Acidibacillus spp.: a novel genus of acidophilic iron-oxidising Firmicutes, Adv. Mater. Res., 2015, vol. 1130, pp. 36–39.

    Article  Google Scholar 

  • Johnson, D.B., Bacelar-Nicolau, P., Okibe, N., Thomas, A., and Hallberg, K.B., Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1082–1089.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, D.B., Hallberg, K.B., and Hedrich, S., Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium “Ferrovum myxofaciens,” Appl. Environ. Microbiol., 2014, vol. 80, pp. 672–680.

    CAS  PubMed  Google Scholar 

  • Kadnikov, V.V., Ivasenko, D.A., Beletsky, A.V., Mardanov, A.V., Danilova, E.V., Pimenov, N.V., Karnachuk, O.V., and Ravin, N.V., A novel uncultured bacterium of the family Gallionellaceae: description and genome reconstruction based on metagenomic analysis of microbial community in acid mine drainage, Microbiology (Moscow), 2016, vol. 85, no. 4, pp. 449–461.

    Article  CAS  Google Scholar 

  • Kimura, S., Bryan, C.G., Hallberg, K.B., and Johnson, D.B., Biodiversity and geochemistry of an extremely acidic, lowtemperature subterranean environment sustained by chemolithotrophy, Environ. Microbiol., 2011, vol. 13, pp. 2092–2104.

    CAS  Google Scholar 

  • Kupka, D., Rzhepishevska, O.I., Dopson, M., Lindström, E.B., Karnachuk, O.V., and Tuovinen, O.H., Bacterial oxidation of ferrous sulfate at low temperatures, Biotechnol. Bioeng., 2007, vol. 97, pp. 1470–1478.

    Article  CAS  PubMed  Google Scholar 

  • Küsel, K., Dorsch, T., Acker, G., and Stackebrandt, E., Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose, Environ. Microbiol., 1999, vol. 65, pp. 3633–3640.

    Google Scholar 

  • Liljeqvist, M., Valdes, J., Holmes, D.S., and Dopson, M., Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3, J. Bacteriol., 2011, vol. 193, pp. 4304–4305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez-García, C., Peláez, A.I, Mesa, V., Sánchez, J. Golyshina, O.V., and Ferrer, M., Microbial diversity and metabolic networks in acid mine drainage habitats, Front. Microbiol., 2015, vol. 29, p. 475.

    Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucl. Acids Res., 2013, vol. 41 (D1), pp. D590–D596.

    Article  CAS  PubMed  Google Scholar 

  • Rohwerder, T., Gehrke, T., Kinzler, K., and Sand, W., Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol., 2003, vol. 63, pp. 239–248.

    Article  CAS  PubMed  Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., and Weber, C.F., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 2009, vol. 75, pp. 7537–7541.

    CAS  PubMed  Google Scholar 

  • Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson, P.M., Solovyev, V.V., Rubin, E.M., Rokhsar, D.S., and Banfield, J.F., Community structure and metabolism through reconstruction of microbial genomes from the environment, Nature, 2004, vol. 428, no. 6978, pp. 37–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ravin.

Additional information

Original Russian Text © V.V. Kadnikov, D.A. Ivasenko, A.V. Beletsky, A.V. Mardanov, E.V. Danilova, N.V. Pimenov, O.V. Karnachuk, N.V. Ravin, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 6, pp. 732–739.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadnikov, V.V., Ivasenko, D.A., Beletsky, A.V. et al. Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit. Microbiology 85, 745–751 (2016). https://doi.org/10.1134/S0026261716060126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716060126

Keywords

Navigation