Skip to main content
Log in

Strategies for adaptation to antibiotics in wild type Pseudomonas aeruginosa and in the strains with small colony phenotype

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Emergence of ciprofloxacin stress-induced mutants in the cultures of a collection strain Pseudomonas aeruginosa ATCC 27853 and of two strains with a small colony phenotype, which were isolated from a swimming pool biofilm, was studied. In biofilm cultures of the small colony phenotype strains, which were already resistant to hypochlorite, prolonged incubation (up to 16 days) with sublethal ciprofloxacin concentrations was shown to result in emergence of the cells, which are resistant to the antibiotic and form colonies on media with rifampicin (100 μg/mL) and streptomycin (50 μg/mL). Under the same conditions, the mechanisms of temporary adaptation are switched on in the cells of strain ATCC 27853, which enabled its shortterm survival at an average level in liquid media and provided for colony formation on solid medium with ciprofloxacin (0.2 μg/mL). Only 20% of these colonies remained viable when transferred to a higher antibiotic concentration (2 μg/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abella, M., Campoy, S., Erill, I., Rojo, F., and Barbe, J., Cohabitation of two different lexA regulons in Pseudomonas putida, J. Bacteriol., 2007, vol. 189, no. 24, pp. 8855–8862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappa, S.T., Maredia, R., Phipps, K., Haskins, W.E., and Weitao, T., Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation, Res. Microbiol., 2013, vol. 164, pp. 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  • Cirz, R.T., O’Neill, B.M., Hammond, J.A., Head, S.R., and Romesberg, F.E., Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin, J. Bacteriol., 2006, vol. 188, pp. 7101–7110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, J.A., Harrison, J.J., Marques, L.L., Foglia, G.R., Stremick, C.A., Storey, D.G., Turner, R.J., Olson, M.E., and Ceri, H., The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14, FEMS Microbiol. Ecol., 2007, vol. 59, pp. 32–46.

    Article  CAS  PubMed  Google Scholar 

  • Demidenok, O.I. and Goncharenko, A.V., Bacterial toxin–antitoxin systems and perspectives for their application in medicine, Appl. Biochem. Microbiol., 2013, vol. 49, no. 6, pp. 535–541.

    Article  CAS  Google Scholar 

  • Déziel, E., Comeau, Y., and Villemur, R., Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities, J. Bacteriol., 2001, vol. 183, pp. 1195–1204.

    Article  PubMed  Google Scholar 

  • Fernández, L. and Hancock, R.E., Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance, Clin. Microbiol. Rev., 2012, vol. 25, pp. 661–681.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez, A., Laureti, L., Crussard, S., Abida, H., Rodríguez-Rojas, A., Blázquez, J., Baharoglu, Z., Mazel, D., Darfeuille, F., Vogel, J., and Matic, I., b-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity, Nature Commun., 2013. doi 10.1038/ncomms2607

    Google Scholar 

  • Kirisits, M.J., Prost, L., Starkey, M., and Parsek, M.R., Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms, Appl. Environ. Microbiol., 2005, vol. 71, pp. 4809–4821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivisaar, M., Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads, FEMS Microbiol. Lett., 2010, vol. 312, pp. 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Koorits, L., Tegova, R., Tark, M., Tarassova, K., Tover, A., and Kivisaar, M., Study of involvement of ImuB and DnaE2 in stationary-phase mutagenesis in Pseudomonas putida, DNA Repair, 2007, vol. 6, pp. 863–868.

    Article  CAS  PubMed  Google Scholar 

  • Layton, J.C. and Foster, P.L., Error-prone DNA polymerase IVis controlled by the stress-response sigma factor, RpoS, in Escherichia coli, Mol. Microbiol., 2003, vol. 50, pp. 549–561.

    CAS  PubMed  Google Scholar 

  • Magdanova, L.A. and Golyasnaya, N.V., Genetic and morphotypic heterogeneity of swimming pool bacterial populations, Ecol. Genetics, 2011, vol. 9, no. 2, pp. 24–33.

    Google Scholar 

  • Mamun, A.A.M., Gautam, S., and Humayun, M.Z., Hypermutagenesis in mutA cells is mediated by mistranslational corruption of polymerase, and is accompanied by replication fork collapse, Mol. Microbiol., 2006, vol. 62, pp. 1752–1763.

    PubMed  Google Scholar 

  • Mulyukin, A.L., Suzina, N.E., Mel’nikov, V.G., Gal’-chenko, V.F., and El’-Registan, G.I., Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum, Microbiology (Moscow), 2014, vol. 83, nos. 1–2, pp. 77–84.

    Article  CAS  Google Scholar 

  • Murray, T.S., Ledizet, M., and Kazmierczak, B.I., Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates, J. Med. Microbiol., 2010, vol. 59, pp. 511–520.

    CAS  PubMed  Google Scholar 

  • Nelson, L.K., Stanton, M.M., Elphinstone, R.E.A., Helwerda, J., Turner, R.J., and Ceri, H., Phenotypic diversification in vivo: Pseudomonas aeruginosa gacS-strains generate small colony variants in vivo that are distinct from in vitro variants, Microbiology (UK), 2010, vol. 156, no. 12, pp. 3699–3709.

    Article  CAS  Google Scholar 

  • Plakunov, V.K., Strelkova, E. A., and Zhurina, M.V., Persistence and adaptive mutagenesis in biofilms, Microbiology (Moscow), 2010, vol. 79, no. 4, pp. 424–434.

    Article  CAS  Google Scholar 

  • Sidorenko, J., Jatsenko, T., Saumaa, S., Teras, R., Tark-Dame, M., Hõrak, R., and Kivisaar, M., Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida, Mutat. Res., 2011, vol. 714, nos. 1–2, pp. 63–77.

    CAS  Google Scholar 

  • Smania, A.M., Segura, I., Pezza, R.J., Becerra, C., Albesa, I., and Argaran, C.E., Emergence of phenotypic variants upon mismatch repair disruption in Pseudomonas aeruginosa, Microbiology (UK), 2004, vol. 150, pp. 1327–1338.

    Article  CAS  Google Scholar 

  • Smith, E.E., Buckley, D.G., Wu, Z., Saenphimmachak, C., Hoffman, L.R., D’Argenio, D.A., Miller, S.I., Ramsey, B.W., Speert, D.P., Moskowitz, S.M., Burns, J.L., Kaul, R., and Olson, M.V., Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 8487–8492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toymentseva, A.A. and Sharipova, M.R., Genetic mechanisms of bacilli adaptation, Microbiology (Moscow), 2013, vol. 82, no. 3, pp. 257–270.

    Article  CAS  Google Scholar 

  • Tsvetkova, N.A., Guzacheva, I.M., Golyasnaya, N.V., and Belyaeva, L.A., Study of frequensy adaptive mutants and population heterogeneity of cells strains Pseudomonas aeruginosa ATCC 27853 and with a phenotype of small colonies as a result of ciprofloxacin, Fundamental Research, 2013, no. 11, pp. 706–710.

    Google Scholar 

  • Wei, Q., Tarighi, S., Dötsch, A., Häussler, S., Müsken, M., Wright, V., Cámara, M., Williams, P., Haenen, S., Boerjan, B., Bogaerts, A., Vierstraete, E., Verleyen, P., Schoofs, L., Willaert, R., et al., Phenotypic and genomewide analysis of an antibiotic-resistant small colony variant (SCV) of Pseudomonas aeruginosa, PLoS ONE, 2011, vol. 6, e29276. 10.1371/journalpone.0029276.(12):e29276doi 10.1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigand, M.R. and Sundin, G.W., General and inducible hypermutation facilitate parallel adaptation in Pseudomonas aeruginosa despite divergent mutation spectra, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 13680–13685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tsvetkova.

Additional information

Original Russian Text © N.A. Tsvetkova, N.V. Golyasnaya, L.A. Belyaeva, I.M. Guzacheva, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 3, pp. 275–282.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkova, N.A., Golyasnaya, N.V., Belyaeva, L.A. et al. Strategies for adaptation to antibiotics in wild type Pseudomonas aeruginosa and in the strains with small colony phenotype. Microbiology 85, 295–301 (2016). https://doi.org/10.1134/S0026261716030140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716030140

Keywords

Navigation