Skip to main content
Log in

On the origin of the shallow and “replica” bands in FeSe monolayer superconductors

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We compare the electronic structures of single FeSe layer films on SrTiO3 substrate (FeSe/STO) and K x Fe2-y Se2 superconductors obtained from extensive LDA and LDA + DMFT calculations with the results of ARPES experiments. It is demonstrated that correlation effects on Fe-3d states are sufficient in principle to explain the formation of the shallow electron-like bands at the M(X)-point. However, in FeSe/STO these effects alone are apparently insufficient for the simultaneous elimination of the hole-like Fermi surface around the Γ-point which is not observed in ARPES experiments. Detailed comparison of ARPES detected and calculated quasiparticle bands shows reasonable agreement between theory and experiment. Analysis of the bands with respect to their origin and orbital composition shows, that for FeSe/STO system the experimentally observed “replica” quasiparticle band at the M-point (usually attributed to forward scattering interactions with optical phonons in SrTiO3 substrate) can be reasonably understood just as the LDA calculated Fe-3d xy band, renormalized by electronic correlations. The only manifestation of the substrate reduces to lifting the degeneracy between Fe-3d xz and Fe-3d yz bands near M-point. For the case of K x Fe2-y Se2 most bands observed in ARPES can also be understood as correlation renormalized Fe-3d LDA calculated bands, with overall semi-quantitative agreement with LDA + DMFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Sadovskii, Phys. Usp. 51, 1201 (2008).

    Article  ADS  Google Scholar 

  2. K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).

    Article  ADS  Google Scholar 

  3. D. C. Johnson, Adv. Phys. 59, 83 (2010).

    Google Scholar 

  4. P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  5. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

    Article  ADS  Google Scholar 

  6. A. A. Kordyuk, Low Temp. Phys. 38, 888 (2012).

    Article  ADS  Google Scholar 

  7. Y. Mizugushi and Y. Takano, J. Phys. Soc. Jpn. 79, 102001 (2010).

    Article  ADS  Google Scholar 

  8. A. Krzton-Maziopa, V. Svitlyk, E, Pomjakushina, R. Puzniak, and K. Conder, J. Phys.: Condens. Matter 28, 293002 (2016).

  9. M. V. Sadovskii, Phys. Usp. 59, 947 (2016).

    Article  ADS  Google Scholar 

  10. M. V. Sadovskii, E. Z. Kuchinskii, and I. A. Nekrasov, J. Magn. Magn. Mater. 324, 3481 (2010).

    Article  ADS  Google Scholar 

  11. I. A. Nekrasov and M. V. Sadovskii, JETP Lett. 99, 598 (2014).

    Article  ADS  Google Scholar 

  12. Q.-Y. Wang, Z. Li, W.-H. Zhang, et al., Chin. Phys. Lett. 29, 037402 (2012).

    Article  ADS  Google Scholar 

  13. R. Peng, H. C. Xu, S. Y. Tan, H. Y. Cao, M. Xia, X. P. Shen, Z. C. Huang, C. H. P. Wen, Q. Song, T. Zhang, B. P. Xie, X. G. Gong, and D. L. Feng, Nat. Commun. 5, 5044 (2014).

    Article  ADS  Google Scholar 

  14. J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, and J.-F. Jia, Nat. Mater. 14, 285 (2015).

    Article  ADS  Google Scholar 

  15. X. Liu, L. Zhao, S. He, J. He, D. Liu, D. Mou, B. Shen, Y. Hu, J. Huang, and X. J. Zhou, J. Phys.: Condens. Matter 27, 183201 (2015).

    ADS  Google Scholar 

  16. J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Nature 515, 245 (2014).

    Article  ADS  Google Scholar 

  17. M. Sunagawa, K. Terashima, T. Hamada, et al., J. Phys. Soc. Jpn. 85, 073704 (2016).

    Article  ADS  Google Scholar 

  18. L. P. Gor’kov, Phys. Rev. B 93, 060507 (2016).

    Article  ADS  Google Scholar 

  19. L. P. Gor’kov, Phys. Rev. B 93, 054517 (2016).

    Article  ADS  Google Scholar 

  20. L. Rademaker, Y. Wang, T. Berlijn, and S. Johnston, New J. Phys. 18, 022001 (2016).

    Article  ADS  Google Scholar 

  21. Y. Wang, K. Nakatsukasa, L. Rademaker, T. Berlijn, and S. Johnston, Supercond. Sci. Technol. 29, 054009 (2016).

    Article  ADS  Google Scholar 

  22. I. A. Nekrasov, N. S. Pavlov, M. V. Sadovskii, and A. A. Slobodchikov, Low Temp. Phys. 42, 891 (2016).

    Article  ADS  Google Scholar 

  23. M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies, A. McCollam, A. Narayanan, S. F. Blake, Y. L. Chen, S. Ghannadzadeh, A. J. Schofield, M. Hoesch, C. Meingast, T. Wolf, and A. I. Coldea, Phys. Rev. B 91, 155106 (2015).

    Article  ADS  Google Scholar 

  24. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Supercond. Nov. Magn. 29, 1117 (2016)

    Article  Google Scholar 

  25. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 102, 26 (2015).

    Article  ADS  Google Scholar 

  26. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 95, 581 (2012).

    Article  ADS  Google Scholar 

  27. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 116, 620 (2013).

    Article  ADS  Google Scholar 

  28. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 97, 18 (2013).

    Article  ADS  Google Scholar 

  29. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 117, 926 (2013).

    Article  ADS  Google Scholar 

  30. Y. Shi, Z.-Q. Han, X.-L. Peng, P. Richard, T. Qian, X.-X. Wu, M.-W. Qiu, S. C. Wang, J. P. Hu, Y.-J. Sun, and H. Ding, arXiv:1606.01470.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Nekrasov.

Additional information

The article is published in the original. Supplementary materials are available for this article at DOI: 10.1134/S0021364017060029 and are accessible for authorized users.

Supplementary material to the article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, I.A., Pavlov, N.S. & Sadovskii, M.V. On the origin of the shallow and “replica” bands in FeSe monolayer superconductors. Jetp Lett. 105, 370–374 (2017). https://doi.org/10.1134/S0021364017060029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017060029

Navigation