Skip to main content
Log in

Microscopic properties of liquid gallium from quasi-elastic neutron scattering experiments

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The results of the neutron diffraction study of liquid gallium on the DIN-2PI spectrometer (IBR-2 reactor, JINR, Dubna) have been discussed. The analysis of the experimental data has provided temperature dependences of diffusion and relaxation characteristics of liquid gallium in the temperature range of 313–793 K. It has been found that an increase in the temperature is accompanied by the gradual deviation of the temperature dependence of the self-diffusion coefficient from the known dependences obtained from the data on viscosity. Such a behavior is explained by the beginning clustering of liquid gallium induced by the prevailing covalent character of interatomic bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Kurachenko, N. K. Voznesenskii, A. A. Goverdovskii, and V. I. Rachkov, Med. Fiz. 2, 29 (2012).

    Google Scholar 

  2. M. C. Bellissent-Funel, P. Chieux, D. Levesque, and J. Weis, Phys. Rev. A 12, 6310 (1989).

    Article  ADS  Google Scholar 

  3. I. Padureanu, A. Radulescu, A. Novikov, V. V. Savostin, and Zh. A. Kozlov, J. Rom. Phys. 48, 97 (2003).

    Google Scholar 

  4. S. Hosokawa, W.-C. Pilgrim, H. Sinn, and E. Alp, J. Phys.: Condens. Matter 20, 114107 (2008).

    ADS  Google Scholar 

  5. X. Gong, G. Chiarotti, M. Parrinello, and E. Tosatti, Europhys. Lett. 21, 469 (1993).

    Article  ADS  Google Scholar 

  6. K. H. Tsai, T.-M. Wu, and Sh.-F. Tsay, J. Chem. Phys. 132, 034502 (2010).

    Article  ADS  Google Scholar 

  7. L. Bove, F. Formisano, F. Sacchetti, C. Petrillo, A. Ivanov, B. Dorner, and F. Barocchi, Phys. Rev. B 71, 014207 (2005).

    Article  ADS  Google Scholar 

  8. L. Bove, F. Sacchetti, and C. Petrillo, Philos. Mag. 84, 1609 (2004).

    Article  ADS  Google Scholar 

  9. F. J. Bermejo, I. Bustinduy, S. J. Levett, J. W. Taylor, R. Fernandez-Perea, and C. Cabrillo, Phys. Rev. B 72, 104103 (2005).

    Article  ADS  Google Scholar 

  10. http://flnp.jinr.ru/157

  11. User Guide. Neutron Experimental Facilities for Condensed Matter Investigation at JINR, Ed. by V. Sikolenko (JINR Press, Dubna, 1997) p. 25.

    Google Scholar 

  12. A. Novikov, Yu. Lisichkin, and N. Fomichev, Zh. Fiz. Khim. 60, 1337 (1986).

    Google Scholar 

  13. E. G. D. Cohen, P. Westerhuijs, and I. M. de Schepper, Phys. Rev. Lett. 59, 2872 (1987).

    Article  ADS  Google Scholar 

  14. J. J. Erpenbeck and W. W. Wood, Phys. Rev. A 43, 4254 (1991).

    Article  ADS  Google Scholar 

  15. T. Scopigno, R. di Leonardo, L. Gomez, A. Q. R. Baron, D. Fioretto, and G. Ruocco, Phys. Rev. Lett. 94, 155301 (2005).

    Article  ADS  Google Scholar 

  16. F. J. Bermejo, I. Bustinduy, S. J. Levett, J. W. Taylor, R. Fernandez-Perea, and C. Cabrillo, Phys. Rev. B 72, 104103 (2005).

    Article  ADS  Google Scholar 

  17. F. Demmel, D. Szubrin, W.-C. Pilgrim, and C. Morkel, Phys. Rev. B 84, 014307 (2011).

    Article  ADS  Google Scholar 

  18. N. M. Blagoveschenskii, A. G. Novikov, and V. V. Savostin, Physica B 407, 4567 (2012).

    Article  ADS  Google Scholar 

  19. S. Chen, P. Gallo, F. Sciortino, and P. Tartaglia, Phys. Rev. E 56, 4231 (1997).

    Article  ADS  Google Scholar 

  20. V. Grupi, D. Majolino, P. Migliardo, and V. Venuti, J. Chem. Phys. B 106, 10884 (2002).

    Article  Google Scholar 

  21. F. Demmel and C. Morkel, Phys. Rev. E 85, 051204 (2012).

    Article  ADS  Google Scholar 

  22. P. Protopapas, H. C. Andersen, and N. A. D. Parlee, J. Chem. Phys. 59, 15 (1973).

    Article  ADS  Google Scholar 

  23. J. Petit and N. Nachtrieb, J. Chem. Phys. 24, 1027 (1956).

    Article  ADS  Google Scholar 

  24. Handbook of Chemistry and Physics, 79th ed. (CRC Press, Boca Raton, 1999).

  25. T. Iida, N. Tripathi, M. Isac, and R. Guthrie, Mater. Sci. Forum 539–543, 2509 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Blagoveshchenskii.

Additional information

Original Russian Text © N.M. Blagoveshchenskii, A.G. Novikov, A.V. Puchkov, V.V. Savostin, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 100, No. 5, pp. 379–384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blagoveshchenskii, N.M., Novikov, A.G., Puchkov, A.V. et al. Microscopic properties of liquid gallium from quasi-elastic neutron scattering experiments. Jetp Lett. 100, 340–345 (2014). https://doi.org/10.1134/S0021364014170020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014170020

Keywords

Navigation