Skip to main content
Log in

Electronic structure and indirect spin-spin interactions in bournonite (CuPbSbS3) according to antimony nuclear quadrupole resonance

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A complex sulfide CuPbSbS3 (bournonite) has been studied by the nuclear quadrupole resonance on 121,123Sb. The temperature dependences of the spectroscopic and relaxation parameters in the temperature range of 10–295 K have been obtained. The crystallochemical features of the environment of the two non-equivalent Sb positions in the unit cell have been revealed from the nuclear quadrupole resonance spectra. The existence of the lattice vibrations with the frequency ω = 110 cm−1 has been demonstrated on the basis of the temperature dependence of the nuclear quadrupole resonance frequencies. Slow beats have been observed on the decay curve of the spin echo signal. Experimental data have been analyzed in order to reveal the existence of the indirect spin-spin interactions involving Sb atoms. The indirect spin-spin coupling constant has been estimated as J = 2.5 ± 0.5 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Dittrich, A. Stadler, D. Topa, et al., Phys. Status Solidi A 206, 1034 (2009).

    Article  ADS  Google Scholar 

  2. O. L. Kheifets, L. Ya. Kobelev, N. V. Mel’nikova, et al., Tech. Phys. 52, 86 (2007).

    Article  Google Scholar 

  3. S. T. Bairamova, M. R. Bagieva, S. M. Agapashaeva, et al., Inorg. Mater. 47, 345 (2011).

    Article  Google Scholar 

  4. V. M. Buznik, Nuclear Resonance in Ionic Crystals (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  5. E. Bychkov and G. Wortmann, J. Non-Cryst. Solids 159, 162 (1993).

    Article  ADS  Google Scholar 

  6. J. Grigas, E. Talik, and W. Lazauskas, Phase Trans. 75, 323 (2002).

    Article  Google Scholar 

  7. V. Edenharter, V. Nowacki, and Y. Takeuchi, Z. Kristallogr. 131, 397 (1970).

    Article  Google Scholar 

  8. M. Frumar, T. Kala, and J. Horak, J. Cryst. Growth 20, 239 (1973).

    Article  ADS  Google Scholar 

  9. W. H. Bloss, Photovoltaic Energy Convers. 1, 15 (1994).

    Google Scholar 

  10. J. R. Yates, Magn. Reson. Chem. 48, 23 (2010).

    Article  Google Scholar 

  11. V. S. Grechishkin, Nuclear Quadrupole Interactions in Solids (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  12. I. N. Pen’kov and I. A. Safin, Dokl. Akad. Nauk SSSR 161, 1404 (1965).

    Google Scholar 

  13. A. Yu. Orlova, R. R. Gainov, A. V. Dooglav, et al., Magn. Reson. Solids 15, 13101 (2013).

    Google Scholar 

  14. R. R. Gainov, A. V. Dooglav, F. G. Vagizov, et al., Eur. J. Mineralogy (2013, in press).

    Google Scholar 

  15. S. Kharbish, G. Giester, and A. Beran, N. Jb. Miner. Abh. 187, 159 (2010).

    Article  Google Scholar 

  16. A. Yu. Orlova, R. R. Gainov, A. V. Duglav, et al., JETP Lett. 96, 370 (2012).

    Article  ADS  Google Scholar 

  17. I. N. Pen’kov and I. A. Safin, Izv. Akad. Nauk SSSR, Ser. Geol. 12, 41 (1966).

    Google Scholar 

  18. T. Kushida, G. B. Benedek, and N. Bloembergen, Phys. Rev. 104, 1364 (1956).

    Article  ADS  Google Scholar 

  19. R. Soong and V. C. Farmer, Mineralog. Mag. 42, 277 (1978).

    Article  Google Scholar 

  20. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).

    Google Scholar 

  21. I. A. Safin and I. N. Pen’kov, Dokl. Akad. Nauk SSSR 147, 10 (1962).

    Google Scholar 

  22. N. E. Ainbinder and A. N. Osipenko, Teor. Eksp. Khim. 9, 658 (1973).

    Google Scholar 

  23. J. Whitaker, E. Ahn, P. Hari, et al., J. Chem. Phys. 119, 8519 (2003).

    Article  ADS  Google Scholar 

  24. E. Mammadov and P. C. Taylor, Jpn. J. Appl. Phys. 47, 8166 (2008).

    Article  ADS  Google Scholar 

  25. G. K. Semin and A. A. Boguslavsky, Chem. Phys. Lett. 251, 250 (1996).

    Article  ADS  Google Scholar 

  26. R. H. Contreras, J. E. Peralta, C. G. Giribet, et al., Ann. Rep. NMR Spectrosc. 51, 167 (2003).

    Article  Google Scholar 

  27. R. E. Wasylishen, Dipolar and Indirect Coupling Tensors in Solids, Wiley Online Library (2008).

    Google Scholar 

  28. T. Itoh and K. Kambe, J. Phys. Soc. Jpn. 12, 763 (1957).

    Article  ADS  Google Scholar 

  29. W. G. Proctor and F. C. Yu, Phys. Rev. 81, 20 (1951).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Orlova.

Additional information

Original Russian Text © A.Yu. Orlova, R.R. Gainov, A.V. Dooglav, I.N. Pen’kov, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 7, pp. 479–484.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlova, A.Y., Gainov, R.R., Dooglav, A.V. et al. Electronic structure and indirect spin-spin interactions in bournonite (CuPbSbS3) according to antimony nuclear quadrupole resonance. Jetp Lett. 97, 413–418 (2013). https://doi.org/10.1134/S0021364013070096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013070096

Keywords

Navigation