Skip to main content
Log in

Phase formation in the Ti–Al–Mo–N system during the growth of adaptive wear-resistant coatings by arc PVD

  • Published:
Inorganic Materials Aims and scope

Abstract

Ti–Al–Mo–N coatings have been grown by arc PVD at different bias voltages, V b, applied to the substrate and partial pressures of nitrogen reaction gas, p(N2), in the working chamber. The coatings have a nanocrystalline structure, with an average grain size on the order of 30–40 nm and a layered architecture made up of alternating layers based on a (Ti,Al)N nitride and Mo-containing phases of thickness comparable to the grain size. It has been shown that the phase composition of the coatings depends on V b and p(N2): raising the energy of deposited ions by increasing V b from–120 to–140 V, as well as raising p(N2) from 0.3 to 0.5 Pa, leads to a more complete molybdenum nitride formation during coating growth, which causes a transition from (Ti,Al)N–Mo–Mo2N compositions to (Ti,Al)N–Mo2N. Measurements of the binding energy of Mo 3d photoelectrons in metallic Mo and the Mo2N nitride by X-ray photoelectron spectroscopy have shown that the transition from the former phase to the latter is accompanied by a negligible energy shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichimura, H. and Rodrigo, A., The correlation of scratch adhesion with composite hardness for tin coatings, Surf. Coat. Technol., 2000, vol. 126, pp. 152–158.

    Article  CAS  Google Scholar 

  2. Azushima, A., Tanno, Y., Iwata, H., and Aoki, K., Coefficients of friction of tin coatings with preferred grain orientations under dry condition, Wear, 2008, vol. 265, pp. 1017–1022.

    Article  CAS  Google Scholar 

  3. Tanno, Y. and Azushima, A., Effect of counter materials on coefficients of friction of tin coatings with preferred grain orientations, Wear, 2009, vol. 266, pp. 1178–1184.

    Article  CAS  Google Scholar 

  4. Avila, R.F. and Mancosu, R.D., Comparative analysis of wear on PVD TiN and (Ti1–xAlx)N coatings in machining process, Wear, 2013, vol. 302, pp. 1192–1200.

    Article  CAS  Google Scholar 

  5. Franz, R. and Mitterer, C., Vanadium containing selfadaptive low-friction hard coatings for high-temperature applications: a review, Surf. Coat. Technol., 2013, vol. 228, pp. 1–13.

    Article  CAS  Google Scholar 

  6. Lugscheider, E., Knotek, O., Bobzin, K., and Bärwulf, S., Tribological properties, phase generation and high temperature phase stability of tungsten-and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications, Surf. Coat. Technol., 2000, vols. 133–134, pp. 362–368.

    Article  Google Scholar 

  7. Solak, N., Ustel, F., Urgen, M., Aydin, S., and Cakir, A.F., Oxidation behavior of molybdenum nitride coatings, Surf. Coat. Technol., 2003, vols. 174–175, pp. 713–719.

    Article  Google Scholar 

  8. Gassner, G., Mayrhofer, P.H., Kutschej, K., Mitterer, C., and Kathrein, M., Magnéli phase formation of PVD Mo–N and W–N coatings, Surf. Coat. Technol., 2006, vol. 201, pp. 3335–3341.

    Article  CAS  Google Scholar 

  9. Yang, Q., Zhao, L.R., Patnaik, P.C., and Zeng, X.T., Wear resistant TiMoN coatings deposited by magnetron, Wear, 2006, vol. 261, pp. 119–125.

    Article  CAS  Google Scholar 

  10. Tian, B., Yue, W., Fu, Z., Gu, Y., Wang, C., and Liu, J., Surface properties of Mo-implanted PVD TiN coatings using MEVVA source, Appl. Surf. Sci., 2013, vol. 280, pp. 482–488.

    Article  CAS  Google Scholar 

  11. Deng, B., Tao, Y., Wang, Y., and Liu, P., Study of the microstructure and tribological properties of Mo + Cimplanted TiN coatings on cemented carbide substrates, Surf. Coat. Technol., 2013, vol. 228, pp. S597–S600.

    Article  CAS  Google Scholar 

  12. Tomaszewski, L., Gulbinski, W., Urbanowicz, A., Suszko, T., Lewandowski, A., and Gulbinski, W., TiAlN based wear resistant coatings modified by molybdenum addition, Vacuum, 2015, vol. 121, pp. 223–229.

    Article  CAS  Google Scholar 

  13. Yang, K., Xian, G., Zhao, H., Fan, H., Wang, J., Wang, H., and Du, H., Effect of Mo content on the structure and mechanical properties of TiAlMoN films deposited on WC–Co cemented carbide substrate by magnetron sputtering, Int. J. Refract. Met. Hard Mater., 2015, vol. 52, pp. 29–35.

    Article  CAS  Google Scholar 

  14. Andrievskii, R.A., Nanomaterials: concept and current issues, Ross. Khim. Zh., 2002, vol. 19, no. 5, pp. 50–56.

    Google Scholar 

  15. Gutkin, M.Yu. and Ovid’ko, I.A., Fizicheskaya mekhanika deformiruemykh nanostruktur (Physical Mechanics of Nanostructures Being Deformed), vol. 1: Nanokristallicheskie materialy (Nanocrystalline Materials), St. Petersburg: Yanus, 2003.

    Google Scholar 

  16. Blinkov, I.V., Volkhonsky, A.O., Belov, D.S., Tabachkova, N.Yu., Voronova, M.I., Andreev, V.A., and Sorokin, M.N., Structure and phase formation during the growth of arc PVD nanocomposite TiN–Ni coatings and their thermal stability, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokrytiya, 2014, no. 2, pp. 43–50.

    Google Scholar 

  17. Veryatin, U.D., Mashirev, V.P., Ryabtsev, N.G., et al., Termodinamicheskie svoistva neorganicheskikh veshchestv. Spravochnik (Thermodynamic Properties of Inorganic Substances: A Handbook), Zefirov, A.P., Ed., Moscow: Atomizdat, 1965.

    Google Scholar 

  18. Alekseev, A.G., Bovkun, G.A., Bolgar, A.S., et al., Svoistva, poluchenie i primenenie tugoplavkikh soedinenii. Spravochnik (Properties, Preparation, and Application of Refractory Compounds: A Handbook), Kosolapova, T.Ya., Ed., Moscow: Metallurgiya, 1986.

    Google Scholar 

  19. Voevodin, A.A. and Zabinski, J.S., Load-adaptive crystalline–amorphous nanocomposites, J. Mater. Sci., 1998, vol. 33, pp. 319–327.

    Article  CAS  Google Scholar 

  20. Mrochek, Zh.A., Eizer, B.A., and Markov, G.V., Osnovy tekhnologii formirovaniya mnogokomponentnykh vakuumnykh elektrodugovykh pokrytii (Principles of the Technology of Multicomponent Vacuum Electric Arc Coatings), Minsk: Navuka i Tekhnika, 1991.

    Google Scholar 

  21. Sanjines, R., Wiemer, C., Almeida, J., and Levy, F., Valence band photoemission study of the Ti–Mo–N system, Thin Solid Films, 1996, vols. 290–291, pp. 334–338.

    Article  Google Scholar 

  22. Nefedov, V.I., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii. Spravochnik (X-Ray Photoelectron Spectroscopy of Chemical Compounds: A Handbook), Moscow: Khimiya, 1984.

    Google Scholar 

  23. Toth, L.E., Transition Metal Carbides and Nitrides, New York: Academic, 1971.

    Google Scholar 

  24. Kunchenko, Yu.V., Kunchenko, V.V., Kartmazov, G.N., and Neklyudov, I.M., Growth of micro-and nanolayer coatings by vacuum arc deposition, Fiz. Inzh. Poverkhn., 2004, vol. 2, no. 1, pp. 102–108.

    Google Scholar 

  25. Morokhov, I.D., Trusov, L.I., and Chizhik, S.P., Ul’tradispersnye metallicheskie sredy (Ultradisperse Metallic Media), Moscow: Atomizdat, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sergevnin.

Additional information

Original Russian Text © V.S. Sergevnin, I.V. Blinkov, D.S. Belov, A.O. Volkhonskii, E.A. Skryleva, A.V. Chernogor, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 7, pp. 793–800.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergevnin, V.S., Blinkov, I.V., Belov, D.S. et al. Phase formation in the Ti–Al–Mo–N system during the growth of adaptive wear-resistant coatings by arc PVD. Inorg Mater 52, 735–742 (2016). https://doi.org/10.1134/S002016851607013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851607013X

Keywords

Navigation