Skip to main content
Log in

Optical and thermal properties of the EuLnCuS3 (Ln = La, Pr, Sm, Gd) compounds

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the IR transmission of the EuLnCuS3 (Ln = La, Pr, Sm, Gd) compounds in the spectral range 400 to 4000 cm–1 and their thermal expansion in the temperature range 300–1450 K. The compounds have high IR transmission in the range 1800–3000 cm–1. The observed sharp changes in their thermal expansion coefficients are caused by phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wakeshima, M., Furuuchi, F., and Hinatsu, Y., Crystal structures and magnetic properties of novel rare-earth copper sulfides EuRCuS3 (R = Y, Gd–Lu), J. Phys.: Condens. Matter, 2004, vol. 16, pp. 5503–5518.

    CAS  Google Scholar 

  2. Brennan, T.D. and Ibers, J.A., LaPbCuS3: Cu(I) insertion into the a-La2S3 framework, J. Solid State Chem., 1992, vol. 97, pp. 377–382.

    Article  CAS  Google Scholar 

  3. Christuk, A.E., Wu Ping, and Ibers, J.A., New quaternary chalcogenides BaLnMQ3 (Ln = rare earth; M = Cu, Ag; Q = S, Se). Structures and grinding-induced phase transition in BaLaCuQ3, J. Solid State Chem., 1994, vol. 110, pp. 330–336.

    Article  CAS  Google Scholar 

  4. Solov’eva, A.V., General aspects of phase equilibria in the AIIS–FeS, AIIS–FeS–Ln2S3, and AIIS–Cu2S–Ln2S3 (AII = Mg, Ca, Sr, Ba; Ln = La–Lu) systems, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Tyumen, 2012.

    Google Scholar 

  5. Sikerina, N.V., General aspects of phase equilibria in the SrS–Cu2S–Ln2S3 (Ln = La–Lu) systems and preparation and structure of SrLnCuS3 compounds, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Tyumen, 2005.

    Google Scholar 

  6. Andreev, O.V. and Ruseikina, A.V., Synthesis, melting points, and heats of fusion of EuLnCuS3 (Ln = La–Nd) compounds, Vestn. Tyumensk. Gos. Univ., 2010, no. 3, pp. 221–227.

    Google Scholar 

  7. Ruseikina, A.V., Solov’ev, L.A., Molokeev, M.S., and Andreev, O.V., Crystal structures of EuLnCuS3 (Ln = Nd and Sm), Russ. J. Inorg. Chem., 2012, vol. 57, no. 1, pp. 79–83.

    Article  CAS  Google Scholar 

  8. Ruseikina, A.V., Solov’ev, L.A., and Andreev, O.V., Crystal structure of EuLaCuS3, Russ. J. Inorg. Chem., 2012, vol. 57, no. 4, pp. 574–578.

    Article  CAS  Google Scholar 

  9. Ruseikina, A.V., Solov’ev, L.A., and Andreev, O.V., Crystal structures of aand ß-EuPrCuS3, Russ. J. Inorg. Chem., 2013, vol. 58, no. 10, pp. 1231–1236.

    Article  CAS  Google Scholar 

  10. Ruseikina, A.V., Solov’ev, L.A., Andreev, O.V., and Kislitsyn, A.A., EuNdCuS3: crystal structure of the high-temperature polymorph and properties, Russ. J. Inorg. Chem., 2014, vol. 59, no. 10, pp. 1109–1114.

    Article  CAS  Google Scholar 

  11. Pokhodun, A.I. and Sharkov, A.V., Eksperimental’nye metody issledovanii. Izmereniya teplofizicheskikh velichin (Experimental Characterization Techniques: Thermophysical Measurements), St. Petersburg: SPb GUITMO, 2006.

    Google Scholar 

  12. Ruseikina, A.V., Demchuk, Zh.A., and Kislitsyn, A.A., Heats of phase transformations of the EuGdCuS3 compound, Vestn. Tyumensk. Gos. Univ., 2012, no. 5, pp. 19–25.

    Google Scholar 

  13. Visser, J.W., A fully automatic program for finding the unit cell from powder data, J. Appl. Crystallogr., 1969, vol. 2, pp. 89–95.

    Article  CAS  Google Scholar 

  14. Solovyov, L.A., Dinnebier, R.E., and Billinge, S.J.L., The derivative difference minimization method, in Powder Diffraction Theory and Practice, 2008, pp. 282–297.

    Chapter  Google Scholar 

  15. Egorov, N.B. and Shagalov, V.V., Infrakrasnaya spektroskopiya redkikh i rasseyannykh elementov (Infrared Spectroscopy of Rare and Dispersed Elements), Tomsk: TPU, 2008.

    Google Scholar 

  16. Yurchenko, E.N., Kustova, G.N., and Batsanov, S.S., Kolebatel’nye spektry neorganicheskikh soedinenii (Vibrational Spectra of Inorganic Compounds), Novosibirsk: Nauka, 1981.

    Google Scholar 

  17. L’vovskii, E.N., Statisticheskie metody postroeniya empiricheskikh formul (Statistical Methods of Deriving Empirical Formulas), Moscow: Vysshaya Shkola, 1988.

    Google Scholar 

  18. Kislitsyn, A.A. and Fadeev, A.M., Dielectric relaxation in high-viscosity oils, Zh. Fiz. Khim., 1994, vol. 68, no. 2, pp. 340–343.

    CAS  Google Scholar 

  19. Vasil’ev, F.P., Chislennye metody resheniya ekstremal’nykh zadach (Numerical Methods of Solving Extremum Problems), Moscow: Nauka, 1980.

    Google Scholar 

  20. Klopotov, A.A., Chekalkin, T.L., and Gyunter, V.E., Effect of preliminary deformation on the fine structure of a TiNi-based alloy in the premartensitic region, Tech. Phys., 2001, vol. 46, no. 6, pp. 770–772.

    Article  CAS  Google Scholar 

  21. Dzhurinskii, B.F. and Bandurkin, G.A., Crystal chemistry of rare-earth compounds, in Spektroskopiya kristallov (Spectroscopy of Crystals), Leningrad: Nauka, 1978, pp. 7–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Murashko.

Additional information

Original Russian Text © Yu.A. Murashko, A.V. Ruseikina, A.A. Kislitsyn, O.V. Andreev, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 12, pp. 1307–1312.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashko, Y.A., Ruseikina, A.V., Kislitsyn, A.A. et al. Optical and thermal properties of the EuLnCuS3 (Ln = La, Pr, Sm, Gd) compounds. Inorg Mater 51, 1213–1218 (2015). https://doi.org/10.1134/S0020168515120079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515120079

Keywords

Navigation