Skip to main content
Log in

Size and zeta potential of CdS nanoparticles in stable aqueous solution of EDTA and NaCl

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of disodium EDTA concentration on the size and zeta potential of CdS nanoparticles in a stable aqueous solution. Measurement results demonstrate that the colloidal solution remains stable at initial Cd2+ and S2− concentrations of 8 mM and initial EDTA concentrations in the range 3.2 to 16 mM. The reactant mixing sequence is shown to influence the ionic state of EDTA in solution, which in turn influences the stabilization mechanism of the CdS nanoparticles. At pH 3, we observe the formation of protonated chelates such as [CdHY], which may form a [-S-Cd-EDTA] ternary complex with the surface of a nanoparticle, thereby ensuring stability of the colloidal solution at a twofold excess of EDTA. Analysis of the nanoparticle size distribution evaluated by dynamic light scattering measurements indicates that the minimum hydrodynamic diameter of the nanoparticles is 10 ± 3 nm. The corresponding zeta potential is about −20 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996, vol. 271, pp. 933–937.

    Article  CAS  Google Scholar 

  2. Ma, Q., Wang, C., and Su, X., Synthesis and application of quantum dot-tagged fluorescent microbeads, Nanosci. Nanotechnol., 2005, vol. 8, no. 3, pp. 1138–1149.

    Google Scholar 

  3. Zhou, M., Nakatani, E., Gronenberg, L.S., et al., Peptide-labeled quantum dots for imaging GPCRs in whole cells and as single molecules, Bioconjugate Chem., 2007, vol. 18, no. 2, pp. 323–332.

    Article  CAS  Google Scholar 

  4. Hullavarad, N.V., Hullavarad, S.S., and Karulkar, P.C., Cadmium sulphide (CdS) nanotechnology: synthesis and applications, J. Nanosci. Nanotechnol., 2008, vol. 8, pp. 3272–3299.

    Article  CAS  Google Scholar 

  5. Munirah Khan, M.S., Aziz, A., Rahman, S.A., and Khan, Z.R., Spectroscopic studies of sol-gel grown CdS nanocrystalline thin films for optoelectronic devices, Mater. Sci. Semicond. Process., 2013, vol. 16, pp. 1894–1898.

    Article  Google Scholar 

  6. Boey, H.T., Tan, W.L., Abu Bakar, N.H.H., et al., Formation and morphology of colloidal chitosan-stabilized copper sulfides, J. Phys. Sci., 2007, vol. 18, no. 1, pp. 87–101.

    CAS  Google Scholar 

  7. Wageha, S. and Badrb, M.H., Cd1 − x ZnxS nanoparticles stabilized by a bifunctional organic molecule, Phys. E (Amsterdam, Neth.), 2008, vol. 40, pp. 2810–2813.

    Article  Google Scholar 

  8. Bryan, J.D. and Gamelin, D.R., Doped semiconductor nanocrystals: synthesis, characterization, physical properties and applications, J. Prog. Inorg. Chem., 2005, vol. 54, pp. 47–126.

    Article  CAS  Google Scholar 

  9. Oleinikov, V.A., Sukhanova, A.V., and Nabiev, I.R., Fluorescent semiconductor nanocrystals in biology and medicine, Ross. Nanotekhnol., 2007, vol. 2, nos. 1–2, pp. 160–173.

    Google Scholar 

  10. Rempel, A.A., Hybrid nanoparticles based on sulfides, oxides, and carbides, Izv. Akad. Nauk, Ser. Khim., 2013, vol. 62, no. 4, pp. 857–869.

    CAS  Google Scholar 

  11. Kozhevnikova, N.S., Vorokh, A.S., and Rempel, A.A., Preparation of stable colloidal solution of cadmium sulfide CdS using ethylenediaminetetraacetic acid, Russ. J. Gen. Chem., 2010, vol. 80, no. 3, pp. 391–394.

    Article  CAS  Google Scholar 

  12. Kozhevnikova, N.S., Demin, A.M., Krasnov, V.P., and Rempel, A.A., The use of 3-mercaptopropyltrimethoxysilane for stabilization of luminescent cadmium sulfide nanoparticles, Dokl. Chem., 2013, vol. 452, no. 1, pp. 215–219.

    Article  CAS  Google Scholar 

  13. Frolov, Yu.G., Kursk kolloidnoi khimii. Poverkhnostnye yavleniya i dispersnye sistemy (A Course of Colloid Chemistry: Surface Phenomena and Disperse Systems), Moscow: Khimiya, 1988.

    Google Scholar 

  14. Evstratova, K.I., Kupina, N.I., and Malakhova, E.E., Fizicheskaya i kolloidnaya khimii (Physical and Colloid Chemistry), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  15. Dyatlova, N.M., Temkina, V.Ya., and Popov, K.I., Kompleksony i kompleksonaty metallov (Chelating Agents and Metal Chelates), Moscow: Khimiya, 1988.

    Google Scholar 

  16. Dahneke, B.E., Measurement of Suspended Particles by Quasi-Elastic Light Scattering, New York: Wiley, 1983.

    Google Scholar 

  17. Pecora, R., Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, New York: Springer Plenum, 1985.

    Book  Google Scholar 

  18. Kaszuba, M., McKnight, D., Connah, M.T., et al., Measuring sub nanometre sizes using dynamic light scattering, J. Nanopart. Res., 2008, vol. 10, pp. 823–829.

    Article  CAS  Google Scholar 

  19. Tscharnuter, W., Photon correlation spectroscopy in particle sizing, in Encyclopedia of Analytical Chemistry, New York: McGraw Hill, 2000, pp. 5469–5480.

    Google Scholar 

  20. Hunter, R.J., Zeta Potential in Colloid Science: Principles and Applications, London: Academic, 1988.

    Google Scholar 

  21. Rempel, A.A., Kozhevnikova, N.S., and Rempel, S.V., Structure of a micelle of cadmium sulfide nanoparticles in aqueous solutions, Izv. Akad. Nauk, Ser. Khim., 2013, no. 2, pp. 400–404.

    Google Scholar 

  22. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Vysshaya Shkola, 2004.

    Google Scholar 

  23. Umland, F., Janssen, A., Thierig, D., and Wunsch, G., Theorie und praktische Anwendung von Komplexbildnern, Frankfurt am Main: Akademische Verlagsgesellschaft, 1971.

    Google Scholar 

  24. Terent’ev, R.A., Chebotarev, V.K., Il’ina, E.G., et al., Some aspects of the reactivity of the ethylenediaminetetraacetic acid (EDTA) disodium salt, Izv. Altaisk. Gos. Univ. Khim., 2011, no. 3-1 (71), pp. 142–146.

    Google Scholar 

  25. Petrukhin, O.M., Analiticheskaya khimiya. Khimicheskie metody analiza (Analytical Chemistry: Chemical Analysis Methods), Moscow: Khimiya, 1993.

    Google Scholar 

  26. Přibil, R., Analytical Applications of EDTA and Related Compounds, Oxford: Pergamon, 1972.

    Google Scholar 

  27. Rabinovich, Yu.V., Kropacheva, T.N., Didik, M.V., and Kornev, V.I., Effect of amino polycarboxylates on copper(II) ion sorption by aluminum oxide, Vestn. Udmurtsk. Univ. Fiz. Khim., 2013, no. 3, pp. 19–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kuznetsova.

Additional information

Original Russian Text © Yu.V. Kuznetsova, A.A. Rempel, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 3, pp. 262–266.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, Y.V., Rempel, A.A. Size and zeta potential of CdS nanoparticles in stable aqueous solution of EDTA and NaCl. Inorg Mater 51, 215–219 (2015). https://doi.org/10.1134/S0020168515020119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515020119

Keywords

Navigation