Skip to main content
Log in

Thermophysical properties of rubidium and lithium halides by γ-ray attenuation technique

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The temperature dependence of linear attenuation coefficient, density and thermal expansion of rubidium halides (RbCl, RbBr and RbI) and lithium halides (LiCl, LiBr and LiF) has been studied by γ-ray attenuation technique. The γ-ray attenuation studies have been carried out using a γ-ray densitometer. The mass attenuation coefficients (μ m ) of rubidium and lithium halides have been determined using γ-beam of different energies viz. (0.0595, 0.662, 1.173 and 1.332 MeV) respectively. The variation of density and coefficients of temperature dependence of density have been measured using Cs (0.662 MeV) source. The values of density at different temperatures have been used to estimate the values of linear attenuation coefficients (μ l ) of the alkali halides studied in the present work for other γ-energies. The variation of thermal expansion of alkali halides studied in the present work has been compared with the results obtained from other methods. The variation in these thermophysical properties have been represented by linear equations. Volume thermal expansion coefficients and mass attenuation coefficients (μ m ) of these compounds for the different energies have been reported and compared with data calculated by empirical and experimental method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.J. and Hubbell, J.H., XCOM: Photon Cross Sections on a Personal Computer, Gaithersburg, Maryland, United States: National Institute of Standards and Technology, 1987, p. 87.

    Google Scholar 

  2. Hubbell, J.H. and Seltzer, S.M., Int. J. Appl. Radiat. Isot., 1995, vol. 33, p. 1269.

    Article  Google Scholar 

  3. Gerward, L., Guilbert, N., Bjorn, J.K., and Levrin, H.R., Phys. Chem., 2001, vol. 60, p. 23.

    ADS  Google Scholar 

  4. Brillo, J., Egry, I., and Ho, I., Int. J. Thermophys., 2006, vol. 27, no. 2, p. 494.

    Article  ADS  Google Scholar 

  5. Stankus, S.V. and Khairulin, R.A., High Temp., 2006, vol. 44, no. 3, p. 389.

    Article  Google Scholar 

  6. Stankus, S.V. and Tyagel’skii, P.V., High Temp., 2000, vol. 38, no. 4, p. 555.

    Article  Google Scholar 

  7. Stankus, S.V., Khairulin, R.A., Mozgovoi, A.G., Roshchupkin, V.V., and Pokrasin, M.A., High Temp., 2005, vol. 43, no. 3, p. 368.

    Article  Google Scholar 

  8. Stankus, S.V., Khairulin, R.A., and Mozgovoi, A.G., High Temp., 2011, vol. 49, no. 2, p. 187.

    Article  Google Scholar 

  9. Drotning, W.D., Int. J. Thermophys., 1985, vol. 6, p. 6.

    Article  Google Scholar 

  10. Straumanis, M.E. and Levins, A.Z., Anorg. Allg. Chem., 1938, vol. 175, p. 238.

    Google Scholar 

  11. Deshpande, V.T., Acta Crystallogr., 1961, vol. 14, p. 794.

    Article  Google Scholar 

  12. White, G.K., Proc. R. Soc. London, Ser. A, 1965, vol. 286, p. 204.

    Article  ADS  Google Scholar 

  13. White, G.K. and Collins, J.G., Proc. R. Soc. London, Ser. A, 1973, vol. 333, p. 237.

    Article  ADS  Google Scholar 

  14. Meincke, P.P.M. and Graham, G.M., Can. J. Phys., 1965, vol. 43, no. 10, p. 1853.

    Article  ADS  Google Scholar 

  15. Sherry, A.M. and Kumar, M., J. Phys. Chem. Solids, 1991, vol. 52, no. 9, p. 1145.

    Article  ADS  Google Scholar 

  16. Kumar, M. and Upadhyay, S.P., Phys. Status Solidi B, 1994, vol. 181, no. 1, p. 55.

    Article  ADS  Google Scholar 

  17. Wang, K. and Reeber, R.R., Phys. Chem. Miner., 1996, vol. 23, p. 254.

    Google Scholar 

  18. Kumar, M. and Upadhyay, S.P., J. Phys. Chem. Solids, 1993, vol. 54, no. 6, p. 773.

    Article  ADS  Google Scholar 

  19. Vetelino, J.F., Namjoshi, K.V., and Mitra, S.S., J. Appl. Phys., 1970, vol. 41, p. 5141.

    Article  ADS  Google Scholar 

  20. Thomas, L.M.,, Phys. Status Solidi B, 2006, vol. 195, no. 2, p. 361.

    Article  ADS  Google Scholar 

  21. Zheng-Hua Fang, Phys. Status Solidi B, 2004, vol. 241, no. 13, p. 2886.

    Article  ADS  Google Scholar 

  22. Nie Chuanhui, Huang Shangyong, and Huang Wei, Appl. Phys. Res., 2010, vol. 2, no. 1, p. 144.

    Article  MathSciNet  Google Scholar 

  23. Drotning, W.D., Rev. Sci. Instrum., 1979, vol. 50, no. 12, p. 567.

    Google Scholar 

  24. Drotning, W.D., J. Less-Common Met., 1984, vol. 96, p. 223.

    Article  Google Scholar 

  25. Ammiraju Sowbhagya Madhusudhan Rao, Kethireddy Narender, Kalvala Gopal Kishan Rao, and Nallacheruvu Gopi Krishna, J. Mod. Phys. 2013, vol. 4, no. 2, p. 208.

    Article  Google Scholar 

  26. Sunil, K. and Sharma, B.S., Indian J. Pure Appl. Phys., 2012, vol. 50, p. 387.

    Google Scholar 

  27. Srivastava, K.K. and Merchant, H.D., J. Phys. Chem. Solids, 1973, vol. 34, p. 2069.

    Article  ADS  Google Scholar 

  28. Pathak, P.D., Trivedi, J.M., and Vasavada, N.G., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1973, vol. 29, p. 477.

    Article  ADS  Google Scholar 

  29. Pathak, P.D. and Pandya, N.M., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1975, vol. 31, p. 155.

    Article  ADS  Google Scholar 

  30. Rapp, J.E. and Merchant, H.D., J. Appl. Phys., 1973, vol. 44, no. 9, p. 3919.

    Article  ADS  Google Scholar 

  31. Pathak, P.D. and Vasavada, N.G., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1972, vol. 28, p. 30.

    Article  ADS  Google Scholar 

  32. Rapp, J.E. and Merchant, H.D., J. App. Phys., 1973, vol. 44, no. 9, p. 3919.

    Article  ADS  Google Scholar 

  33. Pathak, P.D. and Vasavada, N.G., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1972, vol. 28, p. 30.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madhusudhan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammiraju, S., Madhusudhan, R., Narender, K. et al. Thermophysical properties of rubidium and lithium halides by γ-ray attenuation technique. High Temp 52, 640–653 (2014). https://doi.org/10.1134/S0018151X14020023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14020023

Keywords

Navigation