Skip to main content
Log in

Simulation of fine-dispersed turbulent flow in a pipe on the basis of the nonlinear model of turbulent viscosity

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A nonlinear model of turbulent viscosity (the explicit algebraic Reynolds stress model) for gas-dispersed flow with small heavy particles has been presented. The calculations have been checked by comparison with the experimental data on the effect of the fine-dispersed admixture on turbulent flow of air in a pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eldhobashi, S.E. and Abou-Arab, T.W., Phys. Fluids, 1983, vol. 26, no. 4, p. 931.

    Article  ADS  Google Scholar 

  2. Rizk, M.A. and Eldhobashi, S.E., Int. J. Multiphase Flow, 1989, vol. 15, no. 1, p. 119.

    Article  Google Scholar 

  3. Simonin, O., in Proceedings 8th Symposium on Turbulent Shear Flows, Munich, Germany, September 9–11, 1991, pp. 7-4-1.

  4. Vinberg, A.A., Zaichik, L.I., and Pershukov, V.A., Izv. Akad. Nauk, Mekh. Zhidk. Gaza, 1992, no. 3, p. 69.

  5. Squires, K.D. and Eaton, J.K., J. Fluids Eng., 1994, vol. 116, p. 778.

    Article  Google Scholar 

  6. Derevich, I.V., High Temp. 2002, vol. 40, no. 1, p. 78.

    Article  Google Scholar 

  7. Terekhov, V.I. and Pakhomov, M.A., Int. J. Therm. Sci., 2004, vol. 43, no. 6, p. 595.

    Article  Google Scholar 

  8. Mandø, M., Lightstone, M.F., Rosendahl, L., Yin, C., and Sørensen, H., Int. J. Heat Fluid Flow, 2009, vol. 30, p. 331.

    Article  Google Scholar 

  9. Benavides, A. and van Wachem, B., Int. J. Heat Fluid Flow, 2009, vol. 30, p. 452.

    Article  Google Scholar 

  10. Zaichik, L.I. and Bochkarev, A.A., High Temp., 2010, vol. 48, no. 1, p. 52.

    Article  Google Scholar 

  11. Taulbee, D.B., Mashayek, F., and Barre, C., Int. J. Heat Fluid Flow, 1999, vol. 20, p. 368.

    Article  Google Scholar 

  12. Zhou, L.X., Xu, Y., Fan, L.S., and Li, Y., Powder Technol., 2001, vol. 116, p. 178.

    Article  Google Scholar 

  13. Lain, S. and Sommerfeld, M., Int. J. Heat Fluid Flow, 2003, vol. 24, p. 616.

    Article  Google Scholar 

  14. Beishuizen, N.A., Naud, B., and Roekaerts, D., Flow, Turbul. Combust., 2007, vol. 79, p. 321.

    Article  Google Scholar 

  15. Boulet, P. and Moissette, S., Int. J. Heat Mass Transfer, 2002, vol. 45, p. 4201.

    Article  MATH  Google Scholar 

  16. Spezizle, C.G., J. Fluid Mech., 1987, vol. 178, p. 459.

    Article  ADS  Google Scholar 

  17. Mashayek, F. and Taulbee, D.B., Numer. Heat Transfer, Part B 2002, vol. 41, p. 31.

    Article  ADS  Google Scholar 

  18. Girimaji, S.S., Fully Explicit and Self-Consistent Algebraic Reynolds Stress Model, Theor. Comput. Fluid Dyn., 1996, vol. 8, p. 387.

    MATH  Google Scholar 

  19. Girimaji, S.S., Phys. Fluids, 1997, vol. 9, no. 4, p. 1067.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Wallin, S. and Johansson, A.V., J. Fluid Mech., 2000, vol. 403, p. 89.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Gatski, T.B. and Rumsey, C.L., in Closure Strategies for Turbulent and Transitional Flows, Launder, B.E. and Sandham, N.D., Ed., Cambridge: Cambridge University Press, 2002, p. 9.

    Google Scholar 

  22. Varaksin, A.Yu., Polezhaev, Yu.V., and Polyakov, A.F., High Temp., 1998, vol. 36, no. 5, p. 744.

    Google Scholar 

  23. Jongen, T. and Gatski, T.B., J. Fluid Mech., 1999, vol. 399, p. 117.

    Article  MATH  ADS  Google Scholar 

  24. Speziale, C.G., Sarkar, S., and Gatski, T.B., J. Fluid Mech., 1991, vol. 227, p. 245.

    Article  MATH  ADS  Google Scholar 

  25. Launder, B.E. and Spalding, D.B., Comput. Methods Appl. Mech. Eng., 1974, vol. 3, no. 1, p. 269.

    Article  MATH  ADS  Google Scholar 

  26. Zaichik, L.I., Pershukov, V.A., Kozelev, M.V., and Vinberg, A.A., Exp. Therm. Fluid Sci., 1997, vol. 15, no. 1, p. 291.

    Article  Google Scholar 

  27. Drobyshevsky, N.I., Zaichik, L.I., Mukin, R.V., Strizhov, V.F., and Filippov, A.S., Thermophys. Aeromech., 2009, vol. 16, no. 4, p. 521.

    Article  ADS  Google Scholar 

  28. Zaichik, L.I., Drobyshevsky, N.I., Filippov, A.S., Mukin, R.V., and Strizhov, V.F., Int. J. Heat Mass Transfer, 2010, vol. 53, no. 1, p. 154.

    Article  MATH  Google Scholar 

  29. Oesterlé, B. and Zaichik, L.I., Int. J. Multiphase Flow, 2006, vol. 32, p. 838.

    Article  MATH  Google Scholar 

  30. Pope, S.B., Turbulent Flows, Cambridge: Cambridge University Press, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.I. Zaichik, L.S. Mukina, V.F. Strizhov, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 6, pp. 898–904.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaichik, L.I., Mukina, L.S. & Strizhov, V.F. Simulation of fine-dispersed turbulent flow in a pipe on the basis of the nonlinear model of turbulent viscosity. High Temp 49, 867–873 (2011). https://doi.org/10.1134/S0018151X1106023X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X1106023X

Keywords

Navigation