Skip to main content
Log in

Sedimentary cover deformations in the equatorial Atlantic and their comparison with geophysical fields

  • Published:
Geotectonics Aims and scope

Abstract

The deformations of the sedimentary cover at near-latitudinal geotraverses west and east of the Mid-Atlantic Ridge in the equatorial part of ocean are compared with potential fields and variations of the V p/V s attribute at a depth of ~470 km. The features of sedimentary cover deformations in abyssal basins are formulated, as well as their differences from the undisturbed bedding of sediments. The elements of chain of phenomena with common spatial manifestations and cause-and-effect relationships have been established, including heterogeneous horizontal movements, which make up macrojointing above “cold” mantle blocks at a depth of ~470 km; serpentinization of upper-mantle rocks; the formation of superposed magnetic anomalies; the release of the fluids, which acoustically bleach out the sedimentary sequence in seismic imaging; and decompaction of rocks leading to vertical motions and forced folding. The origin of the Atlantic marginal dislocation zone is explained. The coincidence of the deformation boundary in the equatorial Atlantic with the zero contour line of the V p/V s attribute is revealed. This coincidence is an indicator of the rheological state of the upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Antipov, V. V. Eremeev, and S. M. Zharkov, “Sedimentary cover structure of the central sector of the Atlantic, in the area of the Cape Verde Fracture,” in Sedimentary Cover Structure in the Central Atlantic, Vol. 449 of Tr. Geol. Inst. Ross. Akad. Nauk (Nauka, Moscow, 1990), pp. 95–110.

    Google Scholar 

  2. M. E. Artem’ev, T. M. Babaeva, I. E. Voidetskii, V. M. Gordin, and V. O. Mikhailov, Isostasy and Gravity Field of the Northern Atlantic (MGK, Moscow, 1987) [in Russian].

    Google Scholar 

  3. E. G. Astafurova, A. M. Gorodnitskii, S. V. Luk’yanov, and S. P. Mashchenkov, “Nature of magnetic anomalies and structure of the oceanic crust of the Mid-Atlantic Ridge and the adjacent basins within the limits of the Canaries–Bahamas geotraverse,” in Nature of Magnetic Anomalies and Structure of Oceanic Crust, Ed. by A. M. Gorodnitskii (VNIIRO, Moscow, 1996), pp. 171–202.

    Google Scholar 

  4. L. V. Dmitriev, B. A. Bazylev, S. A. Silantiev, M. V. Borisov, S. Yu. Sokolov, and A. Bugo, “Hydrogen and methane formation with serpentization of mantle hyperbasites of the ocean and oil generation,” Ross. Zh. Nauk Zemle 1, 511–519 (1999).

    Google Scholar 

  5. V. E. Verzhbitsky, Extended Abstract of Candidate (Geol.-Miner.) Sci. Dissertation, (Inst. Oceanol., Ross. Acad. Sci., Moscow, 2000).

    Google Scholar 

  6. Yu. N. Voskresenskii, Study of Amplitude Variations in Reflected Seismic Waves For the Purpose of Searching for and Prospecting of Hydrocarbon Fields (Ross. Gos. Univ. Nefti Gaza, Moscow, 2001) [in Russian].

    Google Scholar 

  7. O. V. Levchenko, “Strike-slip nature of intraplate deformations in the sedimentary cover of the NE Indian Ocean,” in Geology of Ocean and Seas, Ed. by A. P. Lisitsin (Inst. Okeanol. Akad. Nauk SSSR, Moscow, 1984), Vol. 2, pp. 124–125.

    Google Scholar 

  8. O. V. Levchenko, L. R. Merklin, and N. N. Sviridov, “Structure of the sedimentary cover and basement relief in the deep basins of the Atlantic and Indian oceans,” in Geophysical Fields and Bottom Structure of Oceanic Basins, Ed. by Yu. P. Neprochnov (Nauka, Moscow, 1990), pp. 89–119.

    Google Scholar 

  9. O. V. Levchenko, “Central Basin (geophysical fields, crustal structure, and intraplate deformations),” in Lithosphere of the Indian Ocean Based on the Geophysical Data, Ed. by A. V. Chekunov and Yu. P. Neprochnov, (Nauk. Dumka, Kiev, 1990), pp. 56–69.

    Google Scholar 

  10. A. O. Mazarovich, Yu. I. Morozov, and N. N. Turko, “Relief and structure of the sedimentary cover of the Marathon and Mercury fractures (Central Atlantic),” Dokl. Ross. Akad. Nauk, Nauki Zemle 324, 643–647 (1992).

    Google Scholar 

  11. A. O. Mazarovich, “Tectonomagmatic phenomena at flanks of the Arkhangelsky, Doldrams, and Vernadsky transoceanic fractures,” Dokl. Ross. Akad. Nauk, Nauki Zemle 332, 62–65 (1993).

    Google Scholar 

  12. A. O. Mazarovich, “Tectonic convergence of transform faults in the near-equatorial Atlantic Ocean,” Dokl. Ross. Akad. Nauk, Nauki Zemle 335, 70–73 (1994).

    Google Scholar 

  13. A. O. Mazarovich, Geologic Structure of the Central Atlantic: Fractures, Volcanic Edifices, and Ocean Floor Deformations (Nauchn. Mir, Moscow, 2000) [in Russian].

    Google Scholar 

  14. A. O. Mazarovich and S. Yu. Sokolov, “Northwesttrending fracture zones in the Central Atlantic Ocean,” Geotectonics 3, 247–254 (2002).

    Google Scholar 

  15. Yu. Yu. Odinokov, G. B. Udintsev, and A. F. Beresnev, “Morphological peculiarities of the zone of marginal dislocations of the Mid-atlantic Ridge,” Geotektonika, No. 1, 97–115 (1990).

    Google Scholar 

  16. V. A. Panaev and S. N. Mitulov, Seismostratigraphy of the Sedimentary Cover of the Atlantic Ocean (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  17. A. I. Pilipenko, “Tectonic deformations of the Brazil Basin,” Dokl. Ross. Akad. Nauk, Nauki Zemle 330, 484–487 (1993).

    Google Scholar 

  18. A. I. Pilipenko, “Tectonic lamination of the oceanic crust in deep basins based on seismic data,” Geotektonika, No. 1, 49–61 (1994).

    Google Scholar 

  19. A. I. Pilipenko, “Tectonic shortening structures in the western flank of the Mid-Atlantic Ridge (8°–12° S),” Dokl. Ross. Akad. Nauk, Nauki Zemle 340, 664–666 (1995).

    Google Scholar 

  20. K. V. Popov, B. A. Bazylev, and V. P. Shcherbakov, “Temperature range for magnetization of oceanic spinel peridotites,” Oceanology 46, 256–267 (2006).

    Article  Google Scholar 

  21. Yu. M. Pushcharovsky, Tectonics of the Atlantic Ocean with Elements of Nonlinear Gedynamics (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  22. Yu. N. Raznitsin and A. I. Pilipenko, “Angola–Brazil geotraverse: Structure and deformations of the oceanic lithosphere,” in Tectonic and Geodynamic Phenomena, Vol. 505 of Tr. Geol. Inst. Ross. Akad. Nauk, Ed. by Yu. M. Pushcharovsky (Nauka, Moscow, 1997), pp. 104–128.

    Google Scholar 

  23. Yu. N. Raznitsin, Tectonic Lamination of the Lithosphere of Young Oceans and Paleobasins, Vol. 560 of Tr. Geol. Inst. Ross. Akad. Nauk (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  24. Sedimentary Environments and Facies, Ed. by H. G. Reading (Blackwell, Oxford, 1986), 2nd ed.

  25. S. Yu. Sokolov, “Deformations of sedimentary cover of the equatorial Atlantic and their comparison with the potential fields,” in Tectonics and Geodynamics of the Continental and Oceanic Lithospheres: General and Regional Aspects, Proceedings of the XLVII Meeting on Tectonics (GEOS, Moscow, 2015), Vol. 2, pp. 172–175.

    Google Scholar 

  26. S. Yu. Sokolov, “Shear factor of tectogenesis in the Atlantic Ocean and relationship of this factor to geodynamic state of the upper mantle and intraplate deformations,” in Tectonics, Geodynamics, and Ore Genesisof Folded Zones and Platforms, Proceedings of the XLVIII Meeting on Tectonics (GEOS, Moscow, 2016), Vol. 2, pp. 178–184.

    Google Scholar 

  27. Physical Properties of Rocks and Mineral Resources (Petrophysics): A Reference Book for Geophysicists, Ed. by N. B. Dortman (Nedra, Moscow, 1984), 2nd ed. [in Russian].

  28. B. C. Heezen, M. Tharp, and M. Ewing, The Floors of the Oceans: Part I, the North Atlantic, Vol. 65 of Geol. Soc. Am., Spec. Pap. (1959).

    Book  Google Scholar 

  29. T. W. Becker, L. Boschi, “A comparison of tomographic and geodynamic mantle models,” Geochem. Geophys. Geosyst. 3, 1–48 (2002). doi 10.129/2001GC000168

    Article  Google Scholar 

  30. J. L. Charlou, Y. Fouquet, H. Bougault, J. P. Donval, J. Etoubleau, P. Jean-Baptiste, A. Dapoigny, P. Appriou, and P. Rona, “Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15o20' N fracture zone and the Mid-Atlantic Ridge,” Geochim. Cosmochim. Acta 62, 2323–2333 (1998).

    Article  Google Scholar 

  31. V. N. Efimov, A. V. Koltsova, A. F. Beresnev, V. M. Golod, S. Yu. Sokolov, and M. V. Zakharov, “The structure of sedimentary cover from single-channel profiling data,” in Equatorial Segment of the Mid- Atlantic Ridge: IOC Technical series No. 46, Initial Results of the Geological and Geophysical Investigations under the EQUARIDGE Program, Cruises of R/V ‘Akademik Nikolaj Strakhov’ in 1987, 1990, 1991, Ed. by G. B. Udintsev (UNESCO, Paris, 1996), pp. 19–24.

    Google Scholar 

  32. K. O. Emery and E. Uchupi, The Geology of the Atlantic Ocean (Springer, New York, 1984).

    Book  Google Scholar 

  33. Equatorial Segment of the Mid-Atlantic Ridge: IOC Technical series No. 46, Initial Results of the Geological and Geophysical Investigations under the EQUARIDGE Program, Cruises of R/V ‘Akademik Nikolaj Strakhov’ in 1987, 1990, 1991, Ed. by G. B. Udintsev (UNESCO, Paris, 1996).

  34. S. P. Grand, R. D. van der Hilst, and S. Widiyantoro, “Global seismic Tomography: A snapshot of convection in the Earth,” GSA Today 7 (4), 1–7 (1997).

    Google Scholar 

  35. D. E. Hayes, A. C. Pimm, J. P. Beckmann, W. E. Benson, W. H. Berger, P. H. Roth, P. R. Supko, and U. Von Rad, “Site 138,” in Vol. XIV of Initial Reports of the Deep Sea Drilling Project (1970), pp. 135–155.

    Google Scholar 

  36. S. Maus, U. Barckhausen, H. Berkenbosch, N. Bournas, J. Brozena, V. Childers, F. Dostaler, J. D. Fairhead, C. Finn, R. R. B. von Frese, C. Gaina, S. Golynsky, R. Kucks, H. Luhr, P. Milligan, et al., “EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements,” Geochem. Geophys. Geosyst. 10, Pap. No. Q08005 (2009). doi 10.1029/ 2009GC002471

    Article  Google Scholar 

  37. R. D. Muller, M. Sdrolias, C. Gaina, and W. R. Roest, “Age, spreading rates, and spreading asymmetry of the world’s ocean crust,” Geochem. Geophys. Geosyst. 9, Pap. No. Q04006 (2008). doi 10.1029/2007GC001743

    Article  Google Scholar 

  38. G. Peter and G. K. Westbrook, “Tectonics of southwestern north Atlantic and Barbados ridge complex,” AAPG Bull. 60, 1078–1106 (1976).

    Google Scholar 

  39. D. T. Sandwell and W. H. F. Smith, “Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate,” J. Geophys. Res.: Solid Earth 114, 1–18 (2009). doi 10.1029/ 2008JB006008

    Article  Google Scholar 

  40. R. C. Searle, “GLORIA investigations of oceanic fracture zones: Comparative study of the transform fault zone,” J. Geol. Soc. (London, U.K.) 143, 743–756 (1986).

    Article  Google Scholar 

  41. T. H. Van Andel, R. P. Von Herzen, J. D. Phillips, “The Vema fracture zone and the tectonics of transverse shear zones in oceanic crustal plates,” Mar. Geophys. Res. 1, 261–283 (1971).

    Article  Google Scholar 

  42. R. D. Van der Hilst, S. Widiyantoro, and E. R. Engdahl, “Evidence of deep mantle circulation from global tomography,” Nature 386, 578–584 (1997).

    Article  Google Scholar 

  43. GEBCO 30” Bathymetry Grid, Version 20141103, 2014. http://www.gebco.net.

  44. GEODAS, Marine Trackline Geophysical Data, 2010. http://www.ngdc.noaa.gov/mgg/geodas/trackline.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Sokolov.

Additional information

Original Russian Text © S.Yu. Sokolov, 2017, published in Geotektonika, 2017, No. 1, pp. 81–96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S.Y. Sedimentary cover deformations in the equatorial Atlantic and their comparison with geophysical fields. Geotecton. 51, 74–88 (2017). https://doi.org/10.1134/S0016852117010071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852117010071

Keywords

Navigation