Skip to main content
Log in

Relationship between plume and plate tectonics

  • Published:
Geotectonics Aims and scope

Abstract

The relationship between plate- and plume-tectonics is considered in view of the growth and breakdown of supercontinents, active rifting, the formation of passive volcanic-type continental margins, and the origin of time-progressive volcanic chains on oceanic and continental plates. The mantle wind phenomenon is described, as well as its effect on plume morphology and anisotropy of the ambient mantle. The interaction of plumes and mid-ocean ridges is discussed. The principles and problems of plume activity analysis in subduction- and collision-related foldbelts are considered and illustrated with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Dobretsov and A. G. Kirdyashkin, “Application of double-layer convection to the structural features of the Earth’s geodynamics,” Geol. Geofiz. 34, 3–26 (1993).

    Google Scholar 

  2. A. A. Kirdyashkin and A. G. Kirdyashkin, “Experimental and theoretical simulation of the thermal and hydrodynamic structure of a subducting plate,” Geotectonics 47, 156–166 (2013).

    Article  Google Scholar 

  3. M. I. Kuz’min, V. V. Yarmolyuk, and V. A. Kravchinsky, “Phanerozoic within-plate magmatism of North Asia: Absolute paleogeographic reconstructions of the African large low-shear-velocity province,” Geotectonics 45, 415–438 (2011).

    Article  Google Scholar 

  4. Yu. G. Leonov, “Continental riftogenesis: Contemporary ideas, problems, and solutions,” in Fundamental Problems of General Tectonics (Nauchnyi Mir, Moscow, 2001), pp. 155–173.

    Google Scholar 

  5. E. N. Melankholina, “Tectonotype of volcanic passive margins in the Norwegian-Greenland region,” Geotectonics 42, 225–244 (2008).

    Article  Google Scholar 

  6. E. N. Melankholina, “Passive margins of the North and Central Atlantic: A comparative study,” Geotectonics 45, 291–301 (2011).

    Article  Google Scholar 

  7. E. N. Melankholina, “Tectonotype of nonvolcanic passive margins in the Iberia–Newfoundland region,” Geotectonics 45, 71–93 (2011).

    Article  Google Scholar 

  8. G. A. Petrov, A. V. Maslov, and Yu. L. Ronkin, “Pre-Paleozoic magmatic complexes of Kvarkush-Kamennogosky anticlinorium (Middle Urals): New Data on geochemistry and geodynamics,” Litosfera, No. 4, 42–69 (2005).

    Google Scholar 

  9. V. N. Puchkov, “The controversy over plumes: Who is actually right?,” Geotectonics 43, 1–17 (2009).

    Article  Google Scholar 

  10. V. N. Puchkov, Paleogeodynamics of the South and Middle Urals (Dauriya, Ufa, 2000) [in Russian].

    Google Scholar 

  11. V. N. Puchkov, Geology of the Urals and the Cis-Ural Region: Topical Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny (DizainPoligrafServis, Ufa, 2010) [in Russian].

    Google Scholar 

  12. V. N. Puchkov, “Dike swarms and related igneous complexes in the Urals,” Geotectonics 44, 37–46 (2012).

    Article  Google Scholar 

  13. V. N. Puchkov, “Plumes in geological history of Urals,” Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol. 88 (4) 64–73 (20137).

    Google Scholar 

  14. V. N. Puchkov, A. A. Krasnobaev, and N. D. Sergeeva, “New data on stratigraphy of the Riphean stratotypical section,” in General Stratigraphic Chart of Russia, Its State-of-the-Art, and Perspectives of Development: All-Russia Meeting, Ed. by V. A. Zakharov (MSK, Moscow, 2013), pp. 70–72.

    Google Scholar 

  15. E. N. Terekhov, A. S. Baluev, and E. S. Przhiyalgovsky, “Structural setting and geochemistry of Devonian dikes in the Kola Peninsula,” Geotectonics 44, 69–84 (2012).

    Article  Google Scholar 

  16. V. V. Yarmolyuk and V. I. Kovalenko, “Deep geodynamics and mantle plumes: Their roles in the formation of the Central Asian Fold Belt,” Petrology 11, 504–531 (2003).

    Google Scholar 

  17. C. Adam, P. Madureira, J. M. Miranda, N. Lourenc, M. Yoshida, and D. Fitzenz, “Mantle dynamics and characteristics of the Azores plateau,” Earth Planet. Sci. Lett. 362, 258–271 (2013).

    Article  Google Scholar 

  18. Z. Altamimi, X. Collilieux, and L. Métivier, “ITRF2008: an improved solution of the international terrestrial reference frame,” J. Geod. 85, 457–473 (2011).

    Article  Google Scholar 

  19. G. Barruol and F. R. Fontaine, “Mantle flow beneath La Réunion hotspot track from SKS splitting,” Earth Planet. Sci. Lett. 362, 108–121 (2013).

    Article  Google Scholar 

  20. T. W. Becker and C. Faccenna, “Mantle conveyor beneath the Tethyan collisional belt,” Earth Planet. Sci. Lett. 310, 453–461 (2011).

    Article  Google Scholar 

  21. K. L. Buchan and R. E. Ernst, Diabase Dyke Swarms and Related Units in Canada and Adjacent Regions, Geological Survey of Canada Map 2022A, scale 1: 5000000, with Accompanying Report (Geological Survey of Canada, 2004).

    Book  Google Scholar 

  22. B. A. Buffett and C. T. Seagle, “Stratification of the top of the core due to chemical interactions with the mantle,” J. Geophys. Res.: Solid Earth 115, B04407 (2010).

    Article  Google Scholar 

  23. K. Burke, B. Steinberger, T. H. Torsvik, and M. A. Smethurst, “Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary,” Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  Google Scholar 

  24. S.-J. Chang and S. Van der Lee, “Mantle plumes and associated flow beneath Arabia and East Africa,” Earth Planet. Sci. Lett. 302, 448–454 (2011).

    Article  Google Scholar 

  25. V. Courtillot and P. Olson, “Mantle Plumes Link Magnetic Superchrons to Phanerozoic Mass Depletion Events,” Earth Planet. Sci. Lett. 260, 495–504 (2007).

    Article  Google Scholar 

  26. V. Courtillot, A. Davaille, J. Besse, and J. Stock, “Three distinct types of hotspots in the Earth’s mantle,” Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  27. N. L. Dobretsov and A. F. Shatskiy, “Possible carbon flux from the core—phenomenological constrain,” in Large Igneous Provinces of Asia: Mantle Plumes and Metallogeny (Petrographica Irkutsk, 2011), pp. 55–60.

    Google Scholar 

  28. F. D’Oriano, L. Angeletti, L. Capotondi, M. A. Laurenzi, L. M. Correa, M. Taviani, L. Torelli, T. Trua, L. Vigliotti, and N. Zitellini, “Coral Patch and Ormonde seamounts as a product of the Madeira hotspot, Eastern Atlantic Ocean,” Terra Nova 22, 494–500 (2010).

    Article  Google Scholar 

  29. A. M. Dziewonski, V. Lekic, and B. Romanowicz, “Mantle Anchor Structure: An argument for bottom up tectonics,” Earth Planet. Sci. Lett. 299, 69–79 (2010).

    Article  Google Scholar 

  30. R. E. Ernst and K. L. Buchan, “Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces,” J. Geodyn. 34, 309–342 (2002).

    Article  Google Scholar 

  31. R. E. Ernst, J. W. Head, E. Parfitt, E. Grosfils, and L. Wilson, “Giant radiating dyke swarms on Earth and Venus,” Earth-Sci. Rev. 39, 1–58 (1995).

    Article  Google Scholar 

  32. R. E. Ernst, Large Igneous Provinces (Elsevier, London, 2014).

    Book  Google Scholar 

  33. C. Faccenna, T. W. Becker, S. Lallemand, and Y. Lagabrielle, “Subduction-triggered magmatic pulses: A new class of plumes?,” Earth Planet. Sci. Lett. 299, 54–68 (2010).

    Article  Google Scholar 

  34. C. G. Farnetani and A. W. Hofmann, “Dynamics and internal structure of the Hawaiian plume,” Earth Planet. Sci. Lett. 295, 231–240 (2010).

    Article  Google Scholar 

  35. G. R. Foulger, “The plate model for the genesis of melting anomalies,” in Plates, Plumes, and Planetary Processes, Vol. 430 of Geol. Soc. Am. Spec. Pap., Ed. by G. R. Foulger and D. M. Jurdy (2007), pp. 1–29.

    Google Scholar 

  36. L. Geoffroy, “Volcanic passive margins,” C._R. Geosci. 337, 1395–1408 (2005).

    Google Scholar 

  37. J. E. Georgen and J. Lin, “Plume-transform interactions at ultra-slow spreading ridges: Implications for the Southwest Indian Ridge,” Geohem., Geophys., Geosyst. 4, 9106 (2003). doi 10.1029/2003GC00542

    Google Scholar 

  38. J. E. Georgen and R. D. Sankar, “Effects of ridge geometry on mantle dynamics in an oceanic triple junction region: Implications for the Azores Plateau,” Earth Planet. Sci. Lett. 298, 23–24 (2010).

    Article  Google Scholar 

  39. S. E. Hansen and A. A. Nyblade, and M. H. Benoit, “Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: Implications for the origin of Cenozoic Afro-Arabian tectonism,” Earth Planet. Sci. Lett. 319–320, 23–24 (2012).

    Article  Google Scholar 

  40. P. J. Heron and J. P. Lowman, “The effects of supercontinent size and thermal insulation on the formation of mantle plumes,” Tectonophysics 510, 28–38 (2011).

    Article  Google Scholar 

  41. E. E. E. Hooft, B. Brandsdóttir, R. Mjelde, H. Shimamura, and Y. Murai, “Asymmetric plume-ridge interaction around Iceland: The Kolbeinsey Ridge Iceland Seismic Experiment,” Geohem., Geophys., Geosyst. 7, Q05015 (2006). doi 10.1029/2005GC001123

    Google Scholar 

  42. G. Hou, T. M. Kusky, C. Wang, and Y. Wang, “Mechanics of the giant radiating Mackenzie dyke swarm: A paleostress field modeling,” J. Geophys. Res.: Solid Earth 115, B02402 (2010). doi 10.1029/2007JB005475

    Article  Google Scholar 

  43. B. Isacks, J. Oliver, and L. R. Sykes, “Seismology and the New Global Tectonics,” J. Geophys. Res. 73, 5855–5899 (1968).

    Article  Google Scholar 

  44. P. Kearey, K. A. Klepeis, and F. J. Vine, Global Tectonics (Wiley, Chichester, UK, 2009), 3rd ed.

    Google Scholar 

  45. A. I. Kiselev, R. E. Ernst, V. V. Yarmolyuk, and K. N. Egorov, “Radiating rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberian craton,” J. Asian Earth Sci. 45, 1–16 (2012).

    Article  Google Scholar 

  46. S. Leroy, E. d’Acremont, C. Tiberi, C. Basuyau, J. Autin, F. Lucazeau, and H. Sloan, “Recent off-axis volcanism in the eastern Gulf of Aden: Implications for plume–ridge interaction,” Earth Planet. Sci. Lett. 293, 140–153 (2010).

    Article  Google Scholar 

  47. Z.-X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. De Waele, R. E. Ernst, I. C. W. Fitzsimons, R. A. Fuck, D. P. Gladkochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, et al., “Assembly, configuration, and break-up history of Rodinia: a synthesis,” Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  48. Z.-X. Li and S. Zhong, “Supercontinent–superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics,” Phys. Earth Planet. Inter. 176, 143–156 (2009).

    Article  Google Scholar 

  49. L. Lobkovsky and V. Kotelkin, “Supercontinents and oceans history from the standpoint of thermochemical mantle convection,” in Supercontinental Cycles and Geodynamics: Symposium Programme and Abstracts (Mosk. Gos. Univ., Moscow, 2013), pp. 49–50.

    Google Scholar 

  50. M. D. Long and T. W. Becker, “Mantle dynamics and seismic anisotropy,” Earth Planet. Sci. Lett. 297, 341–354 (2010).

    Article  Google Scholar 

  51. E. Martin, J. L. Paquette, V. Bosse, G. Ruffet, M. Tiepolo, and O. Sigmarsson, “Geodynamics of rift–plume interaction in Iceland as constrained by new 40Ar/39Ar and in situ U–Pb zircon ages,” Earth Planet. Sci. Lett. 311, 28–38 (2011).

    Article  Google Scholar 

  52. S. Maruyama, M. Santosh, and D. Zhao, “Superplume, supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the core-mantle boundary,” Gondwana Res. 11, 7–37 (2007).

    Article  Google Scholar 

  53. E. Mittelstaedt, G. Ito, “Plume-ridge interaction, lithospheric stresses, and the origin of near-ridge lineaments,” Geohem., Geophys., Geosyst. 6, Q06002 (2005). doi 10.102/2004GC0008609

    Google Scholar 

  54. E. Mittelstaedt, G. Ito, and M. D. Behn, “Mid-ocean ridge jumps associated with hotspot magmatism,” Earth Planet. Sci. Lett. 266, 256–270 (2008).

    Article  Google Scholar 

  55. W. J. Morgan, “Convective plumes in the lower mantle,” Nature 230, 42–43 (1971).

    Article  Google Scholar 

  56. J. M. O’Connor, P. Stoffers, J. R. Wijbrans, T. J. Worthington, “Migration of widespread long-lived volcanism across the Galápagos Volcanic Province: Evidence for a broad hotspot melting anomaly?,” Earth Planet. Sci. Lett. 263, 339–354 (2007).

    Article  Google Scholar 

  57. P. L. Olson, G. A. Glatzmaier, and R. S. Coe, “Complex polarity reversals in a geodynamo model,” Earth Planet. Sci. Lett. 304, 168–179 (2011).

    Article  Google Scholar 

  58. J. Perit and M. Heinert, “Kinematic model of the South Icelandic tectonic system,” Geophys._J. Int. 164, 168–175 (2006).

    Google Scholar 

  59. C. M. Puskas and R. B. Smith, “Intraplate deformation and microplate tectonics of the Yellowstone hot spot and surrounding western U.S. interior,” J. Geophys. Res.: Solid Earth 114, B04410 (2009).

    Article  Google Scholar 

  60. V. N. Puchkov, “Paleozoic evolution of the East European continental margin involved into the Urals,” in Mountain Building in the Uralides: Pangea to the Present, Vol. 132 of AGU Geophysical Monograph Series, Ed. by D. Brown, C. Juhlin, and V. Puchkov (2002), pp. 9–31.

    Chapter  Google Scholar 

  61. V. Puchkov, “Plume tectonics + plate tectonics = global tectonics?,” in Large Igneous Provinces of Asia: Mantle Plumes and Metallogeny (Petrographica, Irkutsk, 2011), pp. 200–203.

    Google Scholar 

  62. V. Puchkov, “Lithospheric response to plume-and plate-tectonic interactions,” Geophys. Res. Abstr. 14, 3942 (2012).

    Google Scholar 

  63. V. N. Puchkov, “General features relating to the occurrence of mineral deposits in the Urals: What, where, when and why,” Ore Geol. Rev. (in press). doi 10.1016/j.oregeorev.2016.01.005

  64. V. N. Puchkov, S. V. Bogdanova, R. Ernst, V. Kozlov, A. A. Krasnobaev, U. Söderlund, M. T. D. Wingate, A. V. Postnikov, and N. D. Sergeeva, “The ca. 1380 Ma Mashak igneous event of the Southern Urals,” Lithos. 174, 109–124 (2013).

    Article  Google Scholar 

  65. V. N. Puchkov, R. E. Ernst, M. A. Hamilton, U. Söderlund, and N. D. Sergeeva, “A Devonian >2000-km long dolerite swarm belt and associated basalts along the Urals-Novozemelian foldbelt: Part of an East-European (Baltica) LIP tracing the Tuzo Superswell,” GFF 138, 6–16 (2016). doi 10.1080/11035897.2015.1118406

    Article  Google Scholar 

  66. B. R. Phillips and N. Coltice, “Temperature beneath continents as a function of continental cover and convective wavelength,” J. Geophys. Res.: Solid Earth 115, B04408 (2010). doi 10.1029/2009JB006600

    Google Scholar 

  67. J. K. Rohde, P. Bogaard, K. Hoernle, F. Hauff, and R. Werner, “Evidence for an age progression along the Tristan-Gough volcanic track from new 40Ar/39Ar ages on phenocryst phases,” Tectonophysics 604, 60–71 (2013).

    Article  Google Scholar 

  68. M. Santosh and T. Kusky, “Origin of paired high pressure–ultrahigh-temperature orogens: A ridge subduction and slab window model,” Terra Nova 22, 35–42 (2010).

    Article  Google Scholar 

  69. A. M. C. Sengör, “Elevation as indicator of mantleplume activity,” in Geol. Soc. Am. Spec. Pap. 352, 183–225 (2001).

    Google Scholar 

  70. Y. Shen, S. C. Solomon, I. T. Bjarnason, G. Nolet, W. J. Morgan, R. M. Allen, K. Vogfjord, S. Jakobsdottir, R. Stefansson, B. R. Julian, and G. R. Foulger, “Seismic evidence for a tilted mantle plume and northsouth mantle flow beneath Iceland,” Earth Planet. Sci. Lett. 197, 261–272 (2002).

    Article  Google Scholar 

  71. F. Sigmundsson and K. Sæmundsson, “Iceland: A window on North-Atlantic divergent plate tectonics and geologic processes,” Episodes 31, 92–97 (2008).

    Google Scholar 

  72. G. Silveira, L. Vinnik, E. Stutzmann, V. Farra, S. Kiselev, and I. Morais, “Stratification of the Earth beneath the Azores from P and S receiver functions,” Earth Planet. Sci. Lett. 299, 91–103 (2010).

    Article  Google Scholar 

  73. C. Small, “Observations of ridge-hotspot interactions in the Southern Ocean,” J. Geophys. Res. 100, 17931–17946 (1995).

    Article  Google Scholar 

  74. R. B. Smith, M. Jordan, B. Steinberger, C. M. Puskas, J. Farrell, G. P. Waite, S. Husen, W.-L. Chang, and R. O’Connell, “Geodynamics of the Yellowstone hotspot and mantle plume: seismic and GPS imaging, kinematics, and mantle flow,” J. Volcanol. Geotherm. Res. 188, 26–56 (2009).

    Article  Google Scholar 

  75. S. V. Sobolev, A. V. Sobolev, D. V. Kuzmin, N. A. Krivolutskaya, A. G. Petrunin, N. T. Arndt, V. A. Radko, and Y. R. Vasiliev, “Linking mantle plumes, large igneous provinces and environmental catastrophes,” Nature 477, 312–316 (2011).

    Article  Google Scholar 

  76. S. V. Sobolev, “Thermo-mechanical modelling of large igneous provinces and continental break-up,” in Supercontinental Cycles and Geodynamics Symposium (Mosk. Gos. Univ., Moscow, 2013), p.70.

    Google Scholar 

  77. T. Torsvik, M. Smethurst, K. Burke, and B. Steinberger, “Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle,” Geophys._J. Int. 167, 1447–1460 (2006).

    Article  Google Scholar 

  78. Torsvik T.H., R. van der Voo, P. V. Doubrovine, K.Burke, B. Steinberger, L. D. Ashval, R. G. Trønnes, S. J. Webb, and A. L. Bull, “Deep mantle structure as a reference frame for movements in and on the Earth,” Proc. Natl. Acad. Sci. U. S. A. 111, 8735–8740 (2014).

    Article  Google Scholar 

  79. V. P. Trubitsyn, “Principles of the tectonics of floating continents,” Izv., Phys. Solid Earth 36, 708–741 (2000).

    Google Scholar 

  80. R. G. Tronnes, Geology and Geodynamics of Iceland: A Field Guide (University of Iceland, 2002). http://www.norvol.hi.is/html/geol/intro/introduction.pdf

    Google Scholar 

  81. P. R. Vogt and W.-Y. Jung, “Origin of the Bermuda volcanoes and Bermuda Rise: History, Observations, Models, and Puzzles,” in Plates, Plumes, and Planetary Processes, Vol. 430 of GSA Spec. Pap. (2014), pp. 1–59. http://www.mantleplumes.org/P%5E4/P%5E4.html

    Google Scholar 

  82. L. Wagner, D. W. Forsyth, M. G. Fouch, and D. E. James, “Detailed three-dimentional shear wave velocity structure of the Northwestern United States from Rayleigh wave tomography,” Earth Planet. Sci. Lett. 299, 273–284 (2010).

    Article  Google Scholar 

  83. K. T. Walker, G. H. R. Bokelmann, and S. L. Klemperer, “Shear-wave splitting to test mantle deformation models around Hawaii,” Geophys. Res. Lett. 28, 4319–4322 (2001).

    Article  Google Scholar 

  84. K. T. Walker, G. H. R. Bokelmann, S. L. Klemperer, and G. Bock, “Shear-wave splitting around the Eifel hotspot: evidence for a mantle upwelling,” Geophys. J. Int. 163, 962–980 (2005).

    Article  Google Scholar 

  85. A. B. Weil, Plate driving forces and stress. http://www.umich.edu/~gs265/tecpaper.htm

  86. P. Wessel and L. W. Kroenke, “Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis,” J. Geophys. Res.: Solid Earth 113, B06101 (2008). doi 10.1029/2007JB005499

    Article  Google Scholar 

  87. J. T. Wilson, “A possible origin of Hawaiian Islands,” Can._J. Phys. 41, 863–866 (1963).

    Article  Google Scholar 

  88. I. Wölbern, A. W. B. Jacob, T. A. Blake, R. Kind, X. Li, X. Yuan, F. Duennebier, and M. Weber, “Deep origin of the Hawaiian tilted plume conduit derived from receiver functions,” Geophys. J. Int. 166, 767–781 (2006).

    Article  Google Scholar 

  89. C. J. Wolfe, S. C. Solomon, G. Laske, J. A. Collins, R. S. Detrick, D. Bercovici, and E. H. Hauri, “Mantle P-wave velocity structure beneath the Hawaiian hotspot,” Earth Planet. Sci. Lett 303, 267–280 (2011).

    Article  Google Scholar 

  90. B. Vryelynck and P. Bouysse, The Changing Face of the Earth. The Break-up of Pangea and Continental Drift over the Past 250 Million Years in Ten Steps (UN Educat., Sci. and Cult. Organization, Paris, 2003).

    Google Scholar 

  91. T. Yang, Y. Shen, S. van der Lee, S. C. Solomon, and S.-H. Hung, “Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography,” Earth Planet. Sci. Lett. 250, 11–26 (2006).

    Article  Google Scholar 

  92. M. Xue and R. M. Allen, “Mantle structure beneath the western United States and its implications for convection processes,” J. Geophys. Res.: Solid Earth 115, B07303 (2010). doi 10.1029/2008JB006079

    Article  Google Scholar 

  93. C.-L. Zhang, H.-K. Li, and M. Santosh, “Revisiting the tectonic evolution of South China: interaction between the Rodinia superplume and plate subduction?,” Terra Nova 25, 212–220 (2013).

    Article  Google Scholar 

  94. Yu. A. Zorin, E. Kh. Turutanov, V. M. Kozhevnikov, S. V. Rasskazov, and A. V. Ivanov, “The nature of Cenozoic upper mantle plumes in East Siberia (Russia) and Central Mongolia,” Russ. Geol. Geophys. 47, 1056–1070 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Puchkov.

Additional information

Original Russian Text © V.N. Puchkov, 2016, published in Geotektonika, 2016, No. 4, pp. 88–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchkov, V.N. Relationship between plume and plate tectonics. Geotecton. 50, 425–438 (2016). https://doi.org/10.1134/S0016852116040075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852116040075

Keywords

Navigation