Skip to main content
Log in

Application of kinematic vorticity techniques for mylonitized Rocks in Al Amar suture, eastern Arabian Shield, Saudi Arabia

  • Published:
Geotectonics Aims and scope

Abstract

The rotation of rigid objects within a flowing viscous medium is a function of several factors including the degree of non-coaxiality. The relationship between the orientation of such objects and their aspect ratio can be used in vorticity analyses in a variety of geological settings. Method for estimation of vorticity analysis to quantitative of kinematic vorticity number (Wm) has been applied using rotated rigid objects, such as quartz and feldspar objects. The kinematic vorticity number determined for high temperature mylonitic Abt schist in Al Amar area, extreme eastern Arabian Shield, ranges from ∼0.8 to 0.9. Obtained results from vorticity and strain analyses indicate that deformation in the area deviated from simple shear. It is concluded that nappe stacking occurred early during an earlier thrusting event, probably by brittle imbrications. Ductile strain was superimposed on the nappe structure at high-pressure as revealed by a penetrative subhorizontal foliation that is developed subparallel to tectonic contacts versus the underlying and overlying nappes. Accumulation of ductile strain during underplating was not by simple shear but involved a component of vertical shortening, which caused the subhorizontal foliation in the Al Amar area. In most cases, this foliation was formed concurrently with thrust sheets imbrications, indicating that nappe stacking was associated with vertical shortening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Ali, M. K. Azer, H. A. Gahlan, S. A. Wilde, M. D. Samuel, and R. J. Stern, “Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi–Heiani Suture, South Eastern Desert of Egypt,” Gondwana Res. 18, 583–595 (2010a).

  2. K. A. Ali, R. J. Stern, W. I. Manton, J. I. Kimura, M. J. Whitehouse, S. K. Mukherjee, P. R. Johnson, and W. R. Griffin, “Geochemical U-Pb zircon, and Nd isotope investigations of the Neoproterozoic Ghawjah metavolcanic rocks, Northwestern Saudi Arabia,” Lithos 120, 379–392 (2010b).

  3. A. M. Al-Saleh and O. M. K. Kassem, “Microstructural, strain analysis and 40Ar/39Ar evidence for the origin of the Mizil Gneiss Dome, Eastern Arabian Shield, Saudi Arabia,” J. Afr. Earth Sci. 70, 24–35 (2012).

    Article  Google Scholar 

  4. A. M. S. Al-Shanti and A. H. G. Mitchell, “Late Precambrian subduction and collision in the Al Amar–Idsas region, Kingdom of Saudi Arabia,” Tectonophysics 30, T41–T47 (1976).

  5. E. H. Bailey, W. P. Irwin, and D. L. Jones, “Franciscan and related rocks, and their significance in the geology of western California,” Calif. Div. Mines Bull. 183, 177 (1964).

    Google Scholar 

  6. J. O. Berkland, L. A. Raymond, J. C. Kramer, E. M. Moores, and M. O’Day, “What is Franciscan?,” AAPG Bull. 56, 2295a–2302 (1972).

    Google Scholar 

  7. A. Borghi, R. Compagnoni, and R. Sandrone, R., “Evoluzione Tettonica Alpina Del settore setten trionale Del Massiccio Del Gran Paradiso (Alpi Occidentali),” Atti Ticinensi di Scienze Della Terra 1, 137–152 (pp.).

  8. A. Borghi, R. Compagnoni, and R. Sandrone, “Composite P–T paths in the Internal Penninic Massifs of the Western Alps: Petrological constraints to their thermo-mechanical evolution,” Eclogae Geol. Helv. 89, 345–367 (1996).

    Google Scholar 

  9. A. S. Collins and S. A. Pisarevsky, “Amalgamating eastern Gondwana: The evolution of the Circum-Indian orogens,” Earth Sci. Rev. 71, 229 (2005).

    Article  Google Scholar 

  10. D. S. Cowan, “Kinematic analysis of shears zones in sandstone and mudstone of the Shimanto belt, Shikoku, SW Japan,” J. Struct. Geol. 12, 431 (1990).

    Article  Google Scholar 

  11. G. M. Cox, C. J. Lewis, A. S. Collins, G. P. Halverson, F. Jourdan, J. Foden, D. Nettle, and F. Kattan, “Ediacaran terrane accretion within the Arabian-Nubian Shield,” Gondwana Res. 21, 341 (2012).

    Article  Google Scholar 

  12. I. W. D. Dalziel, “Neoproterozoic–Paleozoic geography and tectonics: Review, hypothesis, environmental speculation,” Geol. Soc. Am. Bull. 109, 16–42 (1997).

    Article  Google Scholar 

  13. D. Elliott, “Deformation paths in structural geology,” Geol. Soc. Am. Bull. 83, 2621–2638 (1972).

    Article  Google Scholar 

  14. A. Ferrand, P. Milesi, and C. Prevot, Geologic and Metallogenic Assessment of the Al Amar Deposit, (Deputy Ministry for Mineral Resources, Jiddah, 1985).

    Google Scholar 

  15. B. Freeman, “The motion of rigid ellipsoidal particles in slow flows,” Tectonophysics 113, 163–183 (1985).

    Article  Google Scholar 

  16. S. K. Ghosh and H. Ramberg, “Reorientation of inclusions by combination of pure shear and simple shear,” Tectonophysics 34, 1–70 (1976).

    Article  Google Scholar 

  17. Z. Hamimi, A. El-Fakharani, and M. M. Abdeen, “Polyphase deformation history and strain analyses of the post-amalgamation depositional basins in the Arabian–Nubian Shield: Evidence from Fatima, Ablah and Hammamat basins,” J. Afr. Earth Sci. 99, 64–92 (2014).

    Article  Google Scholar 

  18. Z. Hamimi, E.-S. K. El-Sawy, A. El-Fakharani, M. Matsah, A. Shujoon, and M. K. El-Shafei, “Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia,” J. Afr. Earth Sci. 99, 51–63 (2014).

    Article  Google Scholar 

  19. Z. Hamimi, M. El-Shafei, G. Kattu, and M. Matsah, “Transpressional regime in southern Arabian Shield: Insights from Wadi Yiba area, Saudi Arabia,” Mineral. Petrol. 107, 849–860 (2013).

    Article  Google Scholar 

  20. Z. Hamimi, M. Matsah, M. El-Shafei, A. El-Fakharani, A. Shujoon, and M. Al-Jabali, “Wadi Fatima thinskinned foreland FAT belt: A post amalgamation marine basin in the Arabian Shield,” Open J. Geol. 2, 271–293 (2012).

    Article  Google Scholar 

  21. C. E. Hedge, Precambrian Geochronology of Part of Northwestern Saudi Arabia, Kingdom of Saudi Arabia (Open-File Report No. 84–381), (U.S. Geol. Surv., Boulder, 1984).

    Google Scholar 

  22. J. R. Hossack, “Pebble deformation and thrusting in the Bygdin area (Southern Norway),” Tectonophysics 5, 315 (1968).

    Article  Google Scholar 

  23. G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. London, Ser. A 02, 161–179 (1922).

    Article  Google Scholar 

  24. P. R. Johnson, “An expanding Arabian-Nubian Shield geochronologic and isotopic dataset: Defining limits and confirming the tectonic setting of a Neoproterozoic accretionary orogen,” The Open Geol. J. 8, 3–33 (2014).

    Article  Google Scholar 

  25. P. Johnson, A. Andresen, A. S. Collins, T. R. Fowler, H. Fritz, W. Ghebreab, and T. Kusky, “Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen,” J. Afr. Earth Sci. 61, 167–232 (2011).

    Article  Google Scholar 

  26. P. R. Johnson and B. Woldehaimanot, “Development of the Arabian–Nubian shield: Perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana,” in Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Vol. 206 of Geol. Soc., London, Spec. Publ. (Geol. Soc., London, 2003), pp. 290–325.

    Google Scholar 

  27. O. M. K. Kassem, “Determining heterogeneous deformation for granitic rocks in the Northern thrust in Wadi Mubark belt, Eastern Desert, Egypt,” Geotectonics 45, 244–254 (2011).

    Article  Google Scholar 

  28. O. M. K. Kassem, “Kinematic vorticity technique for porphyroclasts in the metamorphic rocks: An example from the Northern thrust in Wadi Mubarak belt, Eastern Desert, Egypt,” Arabian J. Geosci. 5, 159–167 (2012).

    Article  Google Scholar 

  29. O. M. K. Kassem, S. H. Abd El Rahim, and E. R. El Nashar, “Strain analysis and microstructural evolution characteristic of Neoproterozoic rocks associations of Wadi El Falek, Centre Eastern Desert, Egypt,” Geotectonics 46, 379–388 (2012).

    Article  Google Scholar 

  30. O. M. K. Kassem, “Kinematic analysis of the Migif area in the Eastern Desert of Egypt,” J. Afr. Earth Sci. 90, 136–149 (2014).

    Article  Google Scholar 

  31. O. M. K. Kassem and Z. Hamimi, “Application of finite strain technique for deformed lithologies in Al Amar suture, Eastern Arabian Shield,” The Open Geol. J. 8, 97–106 (2014).

    Article  Google Scholar 

  32. O. M. K. Kassem and U. Ring, “Underplating-related finite-strain patterns in the Gran Paradiso massif, Western Alps, Italy: Heterogeneous ductile strain superimposed on a nappe stack,” J. Geol. Soc. (London, U. K.) 161, 875–884 (2004).

    Article  Google Scholar 

  33. A. Kröner, P. Linnebacher, R. J. Stern, T. Reischmann, W. Manton, and I. M. Hussein, “Evolution of PanAfrican island arc assemblages in the southern Red Sea Hills, Sudan, and in southwestern Arabia as exemplified by geochemistry and geochronology,” Precambrian Res. 53, 99–118 (1991).

    Article  Google Scholar 

  34. R. D. Law, M. P. Searle, and R. L. Simpson, “Strain, deformation temperatures and velocity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet,” J. Geol. Soc. (London, U. K.) 161, 305–320 (2004).

    Article  Google Scholar 

  35. G. S. Lister and P. F. Williams, “The partitioning of deformation in flowing rock masses,” Tectonophysics 92, 1–33 (1983).

    Article  Google Scholar 

  36. L. E. Malvern, Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood Cliffs, NJ, 1969).

    Google Scholar 

  37. W. D. Means, B. E. Hobbs, G. S. Lister, and P. F. Williams, “Vorticity and non-coaxiality in progressive deformations,” J. Struct. Geol. 2, 371–378 (1980).

    Article  Google Scholar 

  38. J. G. Meert and T. H. Torsvik, “The making and unmaking of a supercontinent: Rodinia revisited,” Tectonophysics 375, 261–288 (2003).

    Article  Google Scholar 

  39. R. D. Nance, J. B. Murphy, and M. Santosh, “The supercontinent cycle: A retrospective essay,” Gondwana Res. 25, 4–29 (2014).

    Article  Google Scholar 

  40. C. W. Passchier, “Flow in natural shear zones-the consequences of spinning flow regimes,” Earth Planet. Sci. Lett. 77, 70–80 (1986).

    Article  Google Scholar 

  41. C. W. Passchier, “Stable positions of rigid objects in non-coaxial flow?a study in vorticity analysis,” J. Struct. Geol. 9, 679–690 (1987).

    Article  Google Scholar 

  42. C. W. Passchier, “Reconstruction of deformation and flow parameters from deformed vein sets,” Tectonophysics 180, 185–199 (1990).

    Article  Google Scholar 

  43. C. W. Passchier and R. A. Trouw, Microtectonics (Springer, Berlin, 1995).

    Google Scholar 

  44. C. W. Passchier and J. L. Urai, “Vorticity and strain analysis using Mohr diagrams,” J. Struct. Geol. 10, 755–763 (1988).

    Article  Google Scholar 

  45. J. G. Ramsay, Folding and Fracturing of Rocks (McGraw Hill, London, 1967).

    Google Scholar 

  46. J. G. Ramsay and M. I. Huber, The Techniques of Modern Structural Geology, Vol. 1: Strain Analysis (Academic Press, New York, 1983).

    Google Scholar 

  47. U. Ring, “Exhumation of blue schists from Samos Island,” Geol. Soc. Greece Bull. 32, 97–104 (1998).

    Google Scholar 

  48. U. Ring and M. T. Brandon, “Deformation and mass loss in the Franciscan subduction complex: Implications for exhumation processes in accretionary wedges,” in Exhumation processes: Normal Faulting, Ductile Flow, and Erosion, Vol. 154 of Geol. Soc. London, Spec. Publ., Ed. by U. Ring, M. T. Brandon, G. S. Lister, and S. D. Willett (London, 1999), pp. 55–86.

    Google Scholar 

  49. U. Ring, M. T. Brandon, and A. Ramthun, “Solutionmass-transfer deformation adjacent to the Glarus thrust, with implications for the tectonic evolution of the Alpine wedge in eastern Switzerland,” J. Struct. Geol. 23, 1491 (2001).

  50. U. Ring and O. M. K. Kassem, “The nappe rule: Why does it work?,” J. Geol. Soc. (London, U. K.) 164, 1109–1112 (2007).

    Article  Google Scholar 

  51. C. Simpson and D. G. De Paor, “Strain and kinematic analysis in general shear zones,” J. Struct. Geol. 15, 1–20 (1993).

    Article  Google Scholar 

  52. C. Simpson and D. G. De Paor, “Practical analysis of the generation of shear zones using the porphyroclast hyperbolic distribution method: An example from the Scandinavian Caledonides,” in Evolution of Geological Structures in Microto Macro-Scales, Ed. by S. Sengupta (Chapman & Hall, London, 1997), pp. 169–184.

    Chapter  Google Scholar 

  53. C. Simpson and S. M. Schmid, “An evolution of criteria to determine the sense of movement of sheared rocks,” Geol. Soc. Am. Bull. 94, 1281–1288 (1983).

    Article  Google Scholar 

  54. R. J. Stern, “Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland,” Ann. Rev. Earth Planet. Sci. 22, 315–319 (1994).

    Article  Google Scholar 

  55. R. J. Stern and P. R. Johnson, “Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis,” Earth-Sci. Rev. 101, 29–67 (2010).

    Article  Google Scholar 

  56. D. B. Stoeser and J. S. Stacey, “Evolution, U–Pb geochronology and isotope geology of the Pan-African Nabitah orogenic belt of the Saudi Arabian Shield,” in The Pan-African belt of NE African and Adjacent Areas, Ed. by S. El-Gaby and R. O. Greiling, (Friedrich, Viewig and Sohn, Braunschweig, 1988), pp. 227–288.

    Google Scholar 

  57. B. Tikoff and C. Teyssier, “Strain and fabric analyses based on porphyroclast interaction,” J. Struct. Geol. 16, 477–491 (1994).

    Article  Google Scholar 

  58. S. R. Wallis, “Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan,” J. Struct. Geol. 14, 271–280 (1992).

    Article  Google Scholar 

  59. S. R. Wallis, “Vorticity analysis and recognition of ductile extension in the Sanbagawa belt, SW Japan,” J. Struct. Geol. 17, 1077–1093 (1995).

    Article  Google Scholar 

  60. T. R. Worsley, R. D. Nance, and J. B. Moody, “Global tectonics and eustasy for the past 2 billion years,” Mar. Geol. 58, 373–400 (1984).

    Article  Google Scholar 

  61. T. R. Worsley, R. D. Nance, and J. B. Moody, “Proterozoic to recent tectonic tuning of biogeochemical cycles,” in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Vol. 32 of Geophysical Monograph, Ed. by E. T. Sunquist and W. S. Broecker (Am. Geophys. Union, 1985), pp. 561–572.

    Chapter  Google Scholar 

  62. T. R. Worsley, R. D. Nance, and J. B. Moody, “Tectonic cycles and the history of the Earth’s biogeochemical and paleoceanographic record,” Paleoceanography 1, 233–263 (1986).

    Article  Google Scholar 

  63. Z. A. H. Nawab, “Evolution of the Al Amar Idasas region of the northern part of the Arabian Shield (Kingdom of Saudi Arabia),” Bull. Bur. Rech. Geol. Min., Sect. 2: Geol. Appl. (Fr.) Nos. 1–2, 1–19 (1978).

    Google Scholar 

  64. O. M. K. Kassem and S. Abdel Raheim, “Finite strain analysis for the Metavolcanic sedimentary rocks in the Gabel El Mayet region, Central Eastern Desert, Egypt,” J. Afr. Earth Sci. 58, 321–330 (2010).

    Article  Google Scholar 

  65. S. Mordechai, “Tracing the plume material in the Arabian-Nubian Shield,” Precambrian Res. 123, 223–234 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Hamimi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamimi, Z., Kassem, O.M.K. & El-Sabrouty, M.N. Application of kinematic vorticity techniques for mylonitized Rocks in Al Amar suture, eastern Arabian Shield, Saudi Arabia. Geotecton. 49, 439–450 (2015). https://doi.org/10.1134/S0016852115050040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852115050040

Keywords

Navigation