Skip to main content
Log in

Development peculiarities of the magmatism synchronous to the formation of the North Atlantic passive margins

  • Published:
Geotectonics Aims and scope

Abstract

Magmatism synchronous to the formation of passive margins of the North Atlantic is discussed. The main features and causes of the geochemical enrichment of the primary magmas at the margins have been established. This paper is based on the published data on the Norwegian-Greenland tectonotype of volcanic margins and the West Iberia-Newfoundland tectonotype of nonvolcanic margins. In the first tectonotype the hot rifting and active magmatism gave rise to the formation of a thick crust at the margin and the adjacent oceanic zone. The second tectonotype is characterized by cold amagmatic rifting and slow initial spreading, which led to the widespread occurrence of ancient continental complexes and serpentinized mantle rocks at the margin, as well as the thin and disturbed oceanic crust nearby. In order to characterize the magmatism and initial oceanic opening, the geological and geochemical data pertaining to the reference sections chosen for each margin were compared in detail. In particular, the geochemical and isotopic data on the flood basalts and suites of parallel dikes related to the pre- and synbreakup magmatic phases were involved for the Norwegian-Greenland region. The predominance of tholeiites enriched in lithophile elements and radiogenic isotopes, as well as a significant contribution of continental material to them, are typical of the volcanic margins. No less than two enriched magma sources for the lower part of the volcanic complex are suggested, whereas a depleted or slightly enriched source is established for the upper part. A more enriched source as compared with the volcanic margins of the Norwegian-Greenland region is suggested for the low-volume magmatic manifestations at the nonvolcanic Iberian margin. The tectonic settings of margins development and their relationships with the effect of deep plumes and the propagation of the extension zone toward the cold Atlantic lithosphere are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Melankholina, “Tectonotype of Volcanic Passive Margins in the Norwegian-Greenland Region,” Geotectonics 42(3), 225–244 (2008).

    Article  Google Scholar 

  2. E. N. Melankholina, “Passive Margins of the North and Central Atlantic: A Comparative Study,” Geotectonics 45(4), 291–301 (2011a).

    Article  Google Scholar 

  3. E. N. Melankholina, “Tectonotype of Nonvolcanic Passive Margins in the Iberia-Newfoundland Region,” Geotectonics 45(1), 71–93 (2011b).

    Article  Google Scholar 

  4. V. N. Puchkov, “The Controversy over Plumes: Who Is Actually Right?,” Geotectonics 43(1), 1–17 (2009).

    Article  Google Scholar 

  5. Yu. M. Pushcharovsky, “Tectonic Phenomena in Oceans,” in Basic Problems of General Tectonics (Nauchnyi Mir, Moscow, 2001), pp. 174–230 [in Russian].

    Google Scholar 

  6. N. M. Sushchevskaya, G. A. Cherkashov, T. I. Tsekhonya, Yu. A. Bogdanov, N. N. Kononkova, and B. V. Belyatskii, “Magmatism of the Mohns and Knipovich Ridges as Spreading Zones of the Polar Atlantic,” Ross. Zhurnal Nauk o Zemle 2(3), 1–19 (2000). http://eos.wdcb.rssi.ru/rjes/v02/rje00043/rje0043.htm

    Google Scholar 

  7. J. Bernard-Griffiths, G. Gruau, G. Cornen, B. Azambre, and J. Mace, “Continental Lithospheric Contribution to Alkaline Magmatism: Isotopic (Nd, Sr, Pb) and Geochemical (REE) Evidence from Serra de Monchique and Mount Ormonde Complexes,” J. Petrol. 38(1), 115–132 (1997).

    Article  Google Scholar 

  8. C. Berndt, O. P. Skogly, S. Planke, O. Eldholm, and R. Mjelde, “High Velocity Break-Up Related Sills in the Vøring Basin off Norway,” J. Geophys. Res. 105(B12), 28443–28455 (2000).

    Article  Google Scholar 

  9. S. B. Bernstein, P. B. Kelemen, C. Tegner, M. D. Kurz, J. Blusztajn, and C. K. Brooks, “Post-Break-Up Magmatism along the East Greenland Tertiary Rifted Margin,” Earth Planet. Sci. Lett. 160, 845–862 (1998).

    Article  Google Scholar 

  10. M.-O. Beslier, G. Cornen, and J. Girardeau, “Tectono-Metamorphic development peculiarities of Peridotites from the Ocean/Continent Transition of the Iberia Abyssal Plain Margin,” Proc. ODP. Sci. Res. 149, 397–412 (1996).

    Google Scholar 

  11. H. Bijwaard and W. Spakman, “Tomographic Evidence for a Narrow Whole-Mantle Plume below Iceland,” Earth Planet. Sci. Lett. 166(3/4), 121–126 (1999).

    Article  Google Scholar 

  12. G. Boillot and E. Winterer, “Drilling on the Galicia Margin: Retrospect and Prospect,” Proc. ODP. Sci. Res. 103, 809–828 (1988).

    Google Scholar 

  13. J. Brodie and J. G. Fitton, “Data Report: Composition of Basaltic Lavas from the Seaward-Deeping Reflector Sequence Recovered synchronous to Deep Sea Drilling Project Leg 81 (Hatton Bank),” Proc. ODP, Sci. Res. 152, 431–435 (1997).

    Google Scholar 

  14. G. Chazot, S. Charpentier, J. Kornprobst, R. Vannucci, and B. Luais, “Lithospheric Mantle development peculiarities synchronous to Continental BreakUp: The West Iberia Non-Volcanic Passive Margin,” J. Petrol. 46(12), 2527–2568 (2005).

    Article  Google Scholar 

  15. D. Chian, K. E. Louden, T. A. Minshull, and R. B. Whitmarsh, “Deep Structure of the Ocean-Continent Transition in the Southern Iberia Abyssal Plain from Seismic Refraction Profiles: Ocean Drilling Program (Legs 149 and 173) Transect,” J. Geophys. Res. 104(B4), 7443–7462 (1999).

    Article  Google Scholar 

  16. G. Cornen, M.-O. Beslier, and J. Girardeau, “Petrology of the Mafic Rocks Cored in the Iberia Abyssal Plain,” Proc. ODP. Sci. Res. 149, 449–469 (1996).

    Google Scholar 

  17. V. Courtillot, C. Jaupart, I. Manighetti, P. Tapponier, and J. Besse, “On Causal Links between Flood Basalts and Continental Break-Up,” Earth Planet. Sci. Lett. 166(3/4), 177–195 (1999).

    Article  Google Scholar 

  18. S. M. Dean, T. A. Minshull, R. B. Whitmarsh, and K. E. Louden, “Deep Structure of the Ocean-Continent Transition in the Southern Iberia Abissal Plain from Seismic Refraction Profiles: The IAM-9 Transect at 40°20′ N,” J. Geophys. Res. 105(B3), 5859–5885 (2000).

    Article  Google Scholar 

  19. A. P. Dickin, “Isotope Geochemistry of Tertiary Igneous Rocks from the Isle of Skye, N.W. Scotland,” J. Petrol. 22, 155–189 (1981).

    Article  Google Scholar 

  20. O. Eldholm, J. Thiede, and E. Taylor, “development peculiarities of the Vøring Volcanic Margin,” Proc. ODP. Sci. Res. 104, 1033–1065 (1989).

    Google Scholar 

  21. J. G. Fitton, B. S. Hardason, R. M. Ellam, and G. Rogers, “Sr-, Nd-, and Pb Isotopic Composition of Volcanic Rocks from the Southeast Greenland Margin at 63° N: Temporal Variation in Crustal Contamination synchronous to Continental Breakup,” Proc. ODP. Sci. Res. 152, 351–357 (1998).

    Google Scholar 

  22. J. G. Fitton, L. M. Larsen, A. D. Saunders, B. S. Hardarson, and P. D. Kempton, “Palaeogene Continental to Oceanic Magmatism on the SE Greenland Continental Margin at 63° N: A Review of the Results of Ocean Drilling Program Legs 152 and 163,” J. Petrol. 41(7), 951–966 (2000).

    Article  Google Scholar 

  23. M. S. Fram and C. E. Lesher, “Generation and Polybaric Differentiation of East Greenland Early Tertiary Flood Basalts,” J. Petrol. 38(2), 231–275 (1997).

    Article  Google Scholar 

  24. M. S. Fram, C. E. Lesher, and A. M. Volpe, “Mantle Melting Systematics: Transition from Continental to Oceanic Volcanism on the Southeast Greenland Margin,” Proc. ODP. Sci. Res. 152, 373–386 (1998).

    Google Scholar 

  25. T. J. Funck, J. R. Hopper, H. C. Larsen, K. E. Louden, K. E. Jacson, B. E. Tucholke, and W. S. Holbrook, “Crustal Structure of the Ocean-Continent Transition at Flemish Cap: Seismic Refraction Results,” J. Geophys. Res. 108(B11), 10-1–10-20 (2003).

    Article  Google Scholar 

  26. L. Gernigon, J. C. Ringenbach, and S. Planke, B. Le Gal, and H. Jonquet-Kolsto, “Extension, Crustal Structure and Magmatism at the Outer Vøring Basin, North Atlantic Margin, Norway,” J. Geol. Soc. London 160(1/2), 197–208 (2003).

    Article  Google Scholar 

  27. D. W. Graham, L. M. Larsen, B. B. Hanan, M. Storey, A. K. Pedersen, and J. E. Lupton, “Helium Isotope Composition of the Early Iceland Mantle Plume Inferred from the Tertiary Picrites of West Greenland,” Earth Planet. Sci. Lett. 160, 241–255 (1998).

    Article  Google Scholar 

  28. M. Grange, U. Scharer, G. Cornen, and J. Girardeau, “First Alkaline Magmatism synchronous to Iberia-Newfoundland Rifting,” Terra Nova 20(6), 28 (2008).

    Article  Google Scholar 

  29. J. D. Greenough, L. M. Jones, and D. J. Mossman, “The Sr Isotopic Composition of Early Jurassic Mafic Rocks of Atlantic Canada: Implications for Assimilation and Injection Mechanisms Affecting Mafic Dykes,” Chem. Geol. Isotope Geosci. Section 80(1), 17–26 (1989).

    Article  Google Scholar 

  30. K. M. Haase, C. W. Devey, and M. Wieneke, “Magmatic Processes and Mantle Heterogeneity beneath the Slow-Spreading Northern Kolbeinsey Ridge Segment, North Atlantic,” Contrib. Mineral. Petrol. 144, 428–448 (2003).

    Article  Google Scholar 

  31. K. Hanghøj, M. Storey, and O. Stechtr, “An Isotope and Trace Element Study of the East Greenland Tertiary Dyke Swarm: Constraints on Temporal and Spatial development peculiarities synchronous to Continental Rifting,” J. Petrol. 44(11), 2081–2112 (2003).

    Article  Google Scholar 

  32. S. R. Hart, “A Large Scale Isotope Anomaly in the Southern Hemisphere Mantle,” Nature 309, 753–757 (1984).

    Article  Google Scholar 

  33. S. R. Hart and J. Blusztajn, “Age and Geochemistry of the Mafic Sills, ODP Site 1276, Newfoundland Margin,” Chem. Geol. 235(3/4), 222–237 (2006).

    Article  Google Scholar 

  34. K. Hitchen, A. C. Morton, E. W. Mearns, M. Whitehouse, and M. S. Stoker, “Geological Implications from Geochemical and Isotopic Studies of Upper Cretaceous and Lower Tertiary Igneous Rocks around the Northern Rockall Trough,” J. Geol. Soc. London 154(3), 517–521 (1997).

    Article  Google Scholar 

  35. J. R. Hopper, T. Dahl-Jensen, W. S. Holbrook, H. C. Larsen, D. Lizarralde, J. Korenaga, G. M. Kent, and P. B. Kelemen, “Structure of the SE Greenland Margin from Seismic Reflection and Refraction Data: Implications for Nascent Spreading Center Subsidence and Asymmetric Crustal Accretion synchronous to North Atlantic Opening,” J. Geophys. Res. 108(B5), 2269–2291 (2003).

    Article  Google Scholar 

  36. G. Ito and P. E. van Keken, “Hotspots and Melting Anomalies,” Treatise on Geophysics 7, 371–475 (2007).

    Article  Google Scholar 

  37. J. L. Joron, H. Bougault, R. C. Maury, M. Bohn, and A. Desprairies, “Strongly Depleted Tholeiites from the Rockall Plateau Margin, North Atlantic: Geochemistry and Mineralogy,” Init. Repts. DSDP 81, 783–794 (1984).

    Google Scholar 

  38. M. B. Klausen and H. C. Larsen, “East Greenland Coast-Parallel Dike Swarm and Its Role in Continental Breakup,” Geol. Soc. Amer. Spec. Paper 362, 133–158 (2002).

    Google Scholar 

  39. S. Kodaira, R. Mjelde, K. Gunnarsson, H. Shiobara, and H. Shimamura, “Structure of the Jan Mayen Microcontinent and Implications for Its development peculiarities,” Geophys. J. Intern. 132, 383–400 (1998).

    Article  Google Scholar 

  40. L. M. Larsen, M. S. Fitton, and M. S. Fram, “Volcanic Rocks of the Southeast Greenland Margin in Comparison with Other Parts of the North Atlantic Tertiary Igneous Province,” Proc. ODP. Sci. Res. 152 315–330 (1998).

    Google Scholar 

  41. L. M. Larsen, J. G. Fitton, and A. D. Saunders, “Composition of Volcanic Rocks from the Southeast Greenland Margin, Leg 163: Major and Trace Element Geochemistry,” Proc. ODP. Sci. Res. 163 63–75 (1999).

    Google Scholar 

  42. H.-C. Larsen and A. Saunders, “Tectonism and Volcanism at the Southeast Greenland Rifted Margin: A Record of Plume Impact and Later Continental Rupture,” Proc. ODP. Sci. Res. 152, 503–533 (1998).

    Google Scholar 

  43. K. W. H. Lau, K. E. Louden, T. Funck, B. E. Tucholke, W. S. Holbrook, J. R. Hopper, and H. C. Larsen, “Crustal Structure across the Grand Banks-Newfoundland Basin Continental Margin. I. Results from a Seismic Refraction Profile,” Geophys. J. Intern. 167(1), 127–156 (2006).

    Article  Google Scholar 

  44. M. A. Menzies, S. Klemperer, C. Ebinger, and J. Baker, “Characteristics of Volcanic Rifted Margins,” Geol. Soc. Amer. Spec. Paper 362, 1–14 (2002).

    Google Scholar 

  45. D. F. Mertz, C. W. Devey, W. Todt, P. Stoffers, and A. W. Hofmann, “Sr-Nd-Pb Isotope Evidence against Plume-Astenosphere Mixing North of Iceland,” Earth Planet. Sci. Lett. 107, 243–255 (1991).

    Article  Google Scholar 

  46. R. Meyer, G. R. Nicoll, J. Hertogen, V. R. Troll, R. M. Ellam, and C. H. Emeleus, “Trace Element and Isotope Constraints on Crustal Anatexis by Upwelling Mantle Melts in the North Atlantic Igneous Province: An Example from the Isle of Rum, NW Scotland,” Tectonics 146(3), 382–399 (2009).

    Google Scholar 

  47. R. Meyer, J. Van Wijk, and L. Gernion, North Atlantic Igneous Province: A Review of Models for Its Formation (2007). http://www.mantleplumes/org

    Google Scholar 

  48. R. Miranda, V. Valadares, P. Terrinha, J. Mata, M. de R. Azevedo, M. Gaspar, J. C. Kullberg, and C. Ribeiro, “Age Constraints on the Late Cretaceous Alkaline Magmatism on the West Iberian Margin,” Cretaceous Res. 30, 575–586 (2009).

    Article  Google Scholar 

  49. R. Mjelde, A. J. Breivik, T. Raum, T. Mittelstaedt, G. Ito, J. I. Faleide, and T. Raum, “Magmatic and Tectonic development peculiarities of the North Atlantic,” J. Geol. Soc. London 165(1), 31–42 (2008).

    Article  Google Scholar 

  50. R. Mjelde, P. Digranes, H. Shimamura, H. Shiobara, S. Kodaira, H. Brekke, T. Egebjerg, N. Sorenes, and S. Thornbjornsen, “Crustal Structure of the Northern Part of the Vøring Basin, Mid-Norway Margin, from Ocean Bottom Seismographs,” Tectonophysics 293(3–4), 175–205 (1998).

    Article  Google Scholar 

  51. R. Mjelde, P. Digranes, M. van Schaack, H. Shimamura, H. Shiobara, S. Kodaira, O. Naess, N. Sorenes, E. Vagnes, “Crustal Structure of the Outer Vøing Plateau, Offshore Norway, from Ocean Bottom Seismic and Gravity Data,” J. Geophys. Res. 106(B4), 6769–6791 (2001).

    Article  Google Scholar 

  52. R. Mjelde, J. Kasahara, H. Shimamura, A. Kanmimura, T. Kanazawa, S. Kodaira, T. Raum, and H. Shiobara, “Lower Crustal Seismic Velocity Anomalies: Magmatic Underplating or Serpentinized Peridotite? Evidence from the Vøring Margin, NE Atlantic,” Marine Geophys. Res. 23(2), 169–183 (2002).

    Article  Google Scholar 

  53. R. Mjelde, S. Kodaira, H. Shimamura, T. Kanazawa, H. Shiobara, E. W. Berg, and O. Riise, “Crustal Structure of the Central Part of the Vøring Basin, Mid-Norway Margin from Ocean Bottom Seismographs,” Tectonophysics 277(4), 235–257 (1997).

    Article  Google Scholar 

  54. T. F. D. Nielsen, “The Shape and Volume of the Skaergaard Intrusion, Greenland: Implications for Mass Balance and Bulk Composition,” J. Petrol. 45(3), 507–530 (2004).

    Article  Google Scholar 

  55. T. F. D. Nielsen, H. Hansen, C. K. Brooks, and C. E. Lesher, and Field Parties, “The East Greenland Continental Margin, the Prinsen af Wales Bjerge and New Skaergaard Intrusion Initiatives,” Geol. Greenland Survey Bull. 189, 83–98 (2001).

    Google Scholar 

  56. G. Nolet, R.M. Allen and D. Zhao, “Mantle Plume Tomography,” Chem. Geol. 241, 248–263 (2007).

    Article  Google Scholar 

  57. L. Parson, L. Viereck, D. Love, I. Gibson, A. Morton, and J. Hertogen, “The Petrology of the Lower Series Volcanics, ODP Site 642,” Proc. ODP. Sci. Res. 104 419–428 (1989).

    Google Scholar 

  58. D. W. Peate, J. A. Baker, J. Blichert-Toft, D. R. Hilton, M. Storey, A. J. R. Kent, C. K. Brooks, H. Hansen, A. K. Pedersen, R. A. Duncan, “The Prinsen af Wales Bjerge Formation Lavas, East Greenland: the Transition from Tholeiitic to Alkalic Magmatism synchronous to Palaeogene Continental Break-Up,” J. Petrol. 44(2), 279–304 (2003).

    Article  Google Scholar 

  59. D. W. Peate and O. Stecher, “Pb Isotope Evidence for Contributions from Different Iceland Mantle Components to Palaeogene East Greenland Flood Basalts,” Lithos 67, 39–52 (2003).

    Article  Google Scholar 

  60. A. K. Pedersen, M. Watt, W. S. Watt, and L. M. Larsen, “Structure and Stratigraphy of the Early Tertiary Basalts of the Blosseville Kyst, East Greenland,” J. Geol. Soc. London 154(3), 565–570 (1997).

    Article  Google Scholar 

  61. M. Pérez-Gussinyé, C. R. Ranero, T. J. Reston, and D. Sawyer, “Mechanism of Extension at Nonvolcanic Margins: Evidence from the Galicia Interior Basin, West of Iberia, J. Geophys. Res. 108(B5), EPM6-1–EPM6-19 (2003).

    Article  Google Scholar 

  62. Prestvik, T., Torske, T., Sundvoll, B., and H. Karlsson, “Petrology of Early Tertiary Nephelinites off Mid-Norway: Additional Evidence for an Enriched End Member of the Ancestral Iceland Plume,” Lithos 46, 317–330 (1999).

    Article  Google Scholar 

  63. S. Price, J. Brodie, A. Whitham, and R. Kent, “Mid-Tertiary Rifting and Magmatism in the Traill East Greenland,” J. Geol. Soc. London 154(3), 419–434 (1997).

    Article  Google Scholar 

  64. C. R. Ranero and J. Phipps Morgan, “Along-Strike Supply of Volcanic Rifted Margins: A Mechanism for Sudden Along-Strike Transitions between Volcanic and Nonvolcanic Rifted Margins,” Eur. Geosci. Union. Geophys. Res. Abstr. 9(08929) (2007).

    Google Scholar 

  65. H. Raschka and F.-J. Eckhardt, “Geochemistry of Basalts from the Norwegian-Greenland Sea, Leg 38, DSDP,” Init. Repts. DSDP 38, 719–730 (1976).

    Google Scholar 

  66. T. J. Reston, “The Structure, development peculiarities and Symmetry of the Magma-Poor Rifted Margins of the North and Central Atlantic: A synthesis,” Tectonophysics (2008). doi: 10.1016/j.tecto.2008.09.002

    Google Scholar 

  67. C. Richardson, P. J. Oakley, and J. R. Cann, “Trace and Major Element Geochemistry of Basalts from Leg 81,” Init. Repts. DSDP 81, 795–806 (1984).

    Google Scholar 

  68. A. H. F. Robertson and Leg 210 Shipboard Scientific Party, “Evidence of Continental Breakup from the Newfoundland Rifted Margin (Ocean Drilling Program Leg 210): Lower Cretaceous Seafloor Formed by Exhumation of Subcontinental Mantle Lithosphere and the Transition to Seafloor Spreading,” Proc. ODP. Sci. Res. 210, 1–69 (2007).

    Google Scholar 

  69. S. M. Russell and R. B. Whitmarsh, “Magmatism at the West Iberia Non-Volcanic Rifted Continental Margin: Evidence from Analyses of Magnetic Anomalies,” Geophys. Journ. Intern. 154(3), 706–730 (2003).

    Article  Google Scholar 

  70. A. D. Saunders, P. D. Kempton, J. G. Fitton, and H. C. Larsen, “Sr, Nd, and Pb Isotopes and Trace Element Geochemistry of Basalts from the Southeast Greenland Margin,” Proc. ODP. Sci. Res. 163, 77–93 (1998).

    Google Scholar 

  71. A. Saunders, H. Larsen, and J. Fitton, “Magmatic Development of the Southeast Greenland Margin and development peculiarities of the Iceland Plume: Geochemical Constraints from Leg 152,” Proc. ODP. Sci. Res. 152, 479–501 (1998).

    Google Scholar 

  72. J.-G. Schilling, “Rare Earth, Sc, Cr, Fe, Co, and Na Abundances in DSDP Leg 38 Basement Basalts: Some Additional Evidence on the development peculiarities of the Thulean Volcanic Province,” Init. Repts. DSDP 38, 741–750 (1976).

    Google Scholar 

  73. J.-G. Schilling, R. Kingsley, D. Fontignie, R. Poreda, and S. Xue, “Dispersion of Jan Mayen and Iceland Mantle Plumes in the Arctic: A He-Pb-Nd-Sr Isotope Tracer Study of Basalts from the Kolbeinsey, Mohns, and Knipovich Ridges,” J. Geophys. Res. 104(B5), 10543–10569 (1999).

    Article  Google Scholar 

  74. J. R. Smallwood and R. S. White, “Ridge-Plume Interaction in the North Atlantic and Its Influence on Continental Break-Up and Seafloor Spreading,” Geol. Soc. London Spec. Publ. 197, 15–37 (2002).

    Article  Google Scholar 

  75. N. Soagera and P. M. Holm, “Extended Correlation of the Paleogene Faroe Islands and East Greenland Plateau Basalts,” Lithos 107(3/4), 205–215 (2009).

    Article  Google Scholar 

  76. P. N. Taylor and A. C. Morton, “Sr, Nd and Pb Isotope Geochemistry of the Upper and Lower Volcanic Series at Site 642,” Proc. ODP. Sci. Res. 104, 429–435 (1989).

    Google Scholar 

  77. M. F. Thirlwall, M. A. M. Gee, R. N. Taylor, and B. J. Murton, “Mantle Components in Iceland and Adjacent Ridges Investigated Using Double-Spike Pb Isotope Ratios,” Geochim. Cosmochim. Acta 68(2), 361–386 (2004).

    Article  Google Scholar 

  78. M. F. Thirlwall, B. G. J. Upton, and C. Jenkins, “Interaction between Continental Lithosphere and Iceland Plume: Sr-Nd-Pb Isotope Geochemistry of Tertiary Basalts, NE Greenland,” J. Petrol. 35, 839–879 (1994).

    Article  Google Scholar 

  79. B. E. Tucholke, D. S. Sawyer, and J.-C. Sibuet, “Breakup of the Newfoundland-Iberia Rift,” Geol. Soc. London Spec. Publ. 282, 9–46 (2007).

    Article  Google Scholar 

  80. B. E. Tucholke and J.-C. Sibuet, “Leg 210 Synthesis: Tectonic, Magmatic, and Sedimentary development peculiarities of the Newfoundland-Iberia Rift,” Proc. ODP. Sci. Res. 210, 1–56 (2007).

    Google Scholar 

  81. B. G. J. Upton, C. H. Emeleus, and R. D. Beckinsale, “Petrology of the Northern East Greenland Tertiary Flood Basalts: Evidence from Hold with Hope and Wollaston Foreland,” J. Petrol. 25, 151–184 (1984).

    Article  Google Scholar 

  82. H. J. Van Avendonk, L. L. Lavier, D. J. Shillington, and G. Manastschal, “Extension of the Continental Crust at the Margin of the Eastern Grand Banks, Newfoundland,” Tectonophysics 468(1/4), 131–148 (2009).

    Article  Google Scholar 

  83. L. G. Viereck, J. Hertogen, L. M. Parson, A. C. Morton, D. Love, and I. L. Gibson, “Chemical Stratigraphy and Petrology of the Vøring Plateau: Tholeiitic Lavas and Interlayered Volcanoclastic Sediments at ODP Hole 642E,” Proc. ODP. Sci. Res. 104, 367–396 (1989).

    Google Scholar 

  84. R. S. White and D. P. McKenzie, “Magmatism at Rift Zones: the Generation of Volcanic Continental Margins and Flood Basalts,” J. Geophys. Res. 94(B6), 7685–7729 (1989).

    Article  Google Scholar 

  85. R. B. Whitmarsh and D. S. Sawyer, “The Ocean-Continent Transition beneath the Iberia Abyssal Plain and Continental Rifting to Seafloor Spreading Processes,” Proc. ODP. Sci. Res. 149, 713–733 (1996).

    Google Scholar 

  86. R. B. Whitmarsh and P. J. Wallace, “The Rift-to-Drift Development of the West Iberia Nonvolcanic Continental Margin: A Summary and Review of the Contribution of Ocean Drilling Program Leg 173,” Proc. ODP. Sci. Res. 173, 1–36 (2001).

    Google Scholar 

  87. D. Zhao, “Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics,” Phys. Earth Planet. Inter. 146, 3–34 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Melankholina.

Additional information

Original Russian Text © E.N. Melankholina, N.M. Sushchevskaya, 2013, published in Geotektonika, 2013, Vol. 47, No. 2, pp. 12–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melankholina, E.N., Sushchevskaya, N.M. Development peculiarities of the magmatism synchronous to the formation of the North Atlantic passive margins. Geotecton. 47, 75–92 (2013). https://doi.org/10.1134/S0016852113020040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852113020040

Keywords

Navigation