Skip to main content
Log in

Response of mesospheric ozone to the heating of the lower ionosphere by high-power HF radio emission

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

We detected a decrease in the intensity of microwave radiation at the atmospheric ozone line at a frequency of 110836.04 MHz during ionospheric modification by high-power HF radiowaves radiated by the Sura Ionospheric Heating Facility. The obtained experimental data allowed us to hypothesize that this effect was caused by the fact that mesospheric ozone was affected by internal gravity waves generated in the E region of the ionosphere during its high-power HF radiowave heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett, J.J. and Corney, M., Middle Atmosphere Reference Model Derived from Satellite Data, Handbook for MAP, 1985, vol. 16, pp. 47–85.

    Google Scholar 

  • Belikovich, V.V. and Benediktov, E.A., Studying the Twilight Ionospheric D Region Using Artificial Periodic Irregularities, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2002, vol. 45, no. 6, pp. 502–508.

    Google Scholar 

  • Belikovich, V.V., Benediktov, E.A., Tolmacheva, A.V., and Bakhmet’eva, N.V., Issledovanie ionosfery s pomoshch’yu iskusstvennykh periodicheskikh neodnorodnostei (Studying the Ionosphere Using Artificial Periodic Irregularities), Nizhni Novgorod: IPF RAN, 1999.

    Google Scholar 

  • Belikovich, V.V., Vyakhirev, V.D., and Kalinina, E.E., Studies of the Ionosphere Using Partial Reflections, Geomagn. Aeron., 2004, vol. 44, no. 2, pp. 189–194 [Geomagn. Aeron. (Engl. transl.), 2004, vol. 44, pp. 170–174].

    Google Scholar 

  • Belova, E., Chilson, P.B., Kirkwood, S., and Rietveld, M.T., The Response Time of Ionospheric Heating to PMSE, J. Geophys. Res., 2003, vol. 108D, p. 8446; doi:10.1029/2002JD002385.

    Article  Google Scholar 

  • Berlose, J.S. and Burke, M.J., Study of the Lower Ionosphere Using Partial Reflections. 1. Experimental Technique and Methods of Analysis, J. Geophys. Res., 1964, vol. 69, pp. 2799–2818.

    Article  Google Scholar 

  • Burmaka, V.P., Domnin, I.F., Uryadov, V.P., and Chernogor, L.F., Variations in the Parameters of Scattered Signals and the Ionosphere, Accompanying the Effect of a Powerful Radio Emission on Plasma, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2009, vol. 52, no. 11, pp. 859–880.

    Google Scholar 

  • Chernogor, L.F., Studying the Lower Ionosphere Using the Methods of Impulsive Cross-Modulation, Geofiz. Zh., 1984, vol. 6, no. 5, pp. 46–58.

    Google Scholar 

  • Cot, C. and Teitelbaum, H., Generation of Gravity Waves by Inhomogeneous Heating of the Atmosphere, J. Atmos. Terr. Phys., 1980, vol. 42, no. 9/10, pp. 877–883.

    Article  Google Scholar 

  • Danilov, A.D., Populyarnaya aeronomiya (Popular Aeronomy), Leningrad: Gidrometeoizdat, 1978.

    Google Scholar 

  • Enell, C.-F., Kero, A., Turunen, E., et al., Effects of D-Region RF Heating Studied by the Sodankyla Ion Chemistry Model, Ann. Geophys., 2005, vol. 23, pp. 1575–1583.

    Article  Google Scholar 

  • Fejer, J.A., The Interaction of Pulsed Radio Waves in the Ionosphere, J. Atmos. Terr. Phys., 1955, vol. 7, no. 6, pp. 322–332.

    Article  Google Scholar 

  • Gage, K.S. and Green, J.L., A Technique for Determining the Temperature Profile from VHF Radar Observations, J. Appl. Meteorol., 1982, vol. 21, pp. 1146–1149.

    Article  Google Scholar 

  • Getmantsev, G.G., Zuikov, N.A., Kotik, D.S., et al., Detecting Combination Frequencies during the Interaction between a Powerful HF Emission and Ionospheric Plasma, Pis’ma Zh. Eksp. Teor. Fiz., 1974, vol. 20, pp. 229–232.

    Google Scholar 

  • Ginzburg, V.L., Rasprostranenie elektromagnitnykh voln v plazme (Propagation of Electromagnetic Waves in Plasma), Moscow: Nauka, 1967.

    Google Scholar 

  • Gossard, E. and Hooke, W.H., Waves in the Atmosphere, Amsterdam: Elsevier, 1975.

    Google Scholar 

  • Grigor’ev, G.I., Acoustic Gravity Waves in the Earth’s Atmosphere: A Review, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1999, vol. 42, no. 1, pp. 3–25.

    Google Scholar 

  • Grigor’ev, G.I. and Dokuchaev, V.P., Generation of Ionospheric Disturbances by Alternating Currents at Polar Latitudes, Geomagn. Aeron., 1969, vol. 9, no. 4, pp. 650–654.

    Google Scholar 

  • Grigor’ev, G.I. and Trakhtengerts, V.Yu., Emission of Internal Gravity Waves during Operation of High-Power Heating Facilities in the Regime of Time Modulation of Ionospheric Currents, Geomagn. Aeron., 1999, vol. 39, no. 6, pp. 90–94 [Geomagn. Aeron. (Engl. transl.), 1999, vol. 39, pp. 758–762].

    Google Scholar 

  • Gurevich, A.V. and Shvartsburg, A.B., Nelineinaya teoriya rasprostraneniya radiovoln v ionosfere (Nonlinear Theory of Radiowave Propagation in the Ionosphere), Moscow: Nauka, 1973.

    Google Scholar 

  • Hilsenrath, E., Ozone Measurements in the Mesosphere and Stratosphere during Two Significant Geophysical Events, J. Atmos. Sci., 1971, vol. 28, pp. 295–297.

    Article  Google Scholar 

  • Itkina, M.A. and Krotova, Z.N., Variation in the Lower Atmosphere Parameters under the Action of a Powerful Radio Emission, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1981, vol. 24, pp. 415–419.

    Google Scholar 

  • Ivanov, V.A., Issledovanie D-oblasti ionosfery metodom chastichnykh otrazhenii (Studying the Ionospheric D Region Using Partial Reflections), Ioshkar-Ola: MPI, 1985.

    Google Scholar 

  • Karashtin, A.N., Komrakov, G.P., Tokarev, Yu.V., and Shlyugaev, Yu.V., Radar Studies at the Sura Facility, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1999, vol. 42, no. 8, pp. 765–779.

    Google Scholar 

  • Krasil’nikov, A.A., Kulikov, Yu.Yu., Ryskin, V.G., and Shchitov, A.M., Microwave Receivers for Diagnosing Minor Gas Constituents of the Earth’s Atmosphere, Izv. Akad. Nauk, Ser. Fiz., 2003, vol. 67, pp. 1788–1792.

    Google Scholar 

  • Kulikov, Y.Y., Krasilnikov, A.A., and Shchitov, A.M., New Mobile Ground-Based Microwave Instrument for Research of Stratospheric Ozone (Some Results of Observation), Proc. MSMW’07 Conf., 2007, vol. 1, pp. 62–66.

    Google Scholar 

  • Kulikov, Y.Y., Demkin, V.M., and Krasilnikov, A.A., Fast Variations of Thermal Emission of Middle Atmosphere in a Line of Ozone at Frequency 110.8 GHz on Plateau Shatzhatmas-Kislovodsk, 31st Annual Apatity Seminar “Physics of Auroral Phenomena”, Apatity, 2008, pp. 72–73.

  • Lee, C.C., Liu, J.Y., Chen, M.Q., et al., Observation and Model Comparisons of the Traveling Atmospheric Disturbances of the Western Pacific Region during the 6–7 April 2000 Magnetic Storm, J. Geophys. Res., 2004, vol. 109, p. A09309; doi:10.1029/2003JA010267.

    Article  Google Scholar 

  • Meltz, G., Holway, L.H., and Tomlyanovich, N.M., Ionospheric Heating by Powerful Radio Waves, Radio Sci., 1974, vol. 9, pp. 1049–1063.

    Article  Google Scholar 

  • Mitra, A.P. and Rowe, J.N., Ionospheric Effects of Solar Flares-VI. Changes in D-Region Ion Chemistry during Solar Flares, J. Atmos. Terr. Phys., 1972, vol. 34, pp. 795–806.

    Article  Google Scholar 

  • De la Noe, J., Baudry, A., Perault, M., et al., Measurements of the Vertical Distribution of Ozone by Ground-Based Microwave Techniques at the Bordeaux Observatory during the June 1981 Intercomparison Campaign, Planet. Space Sci., 1983, vol. 16, pp. 737–741.

    Google Scholar 

  • Pakhomov, S.V. and Knyazev, A.K., Ozone in the Mesosphere and Electron Density in the Midlatitude D Region, Geomagn. Aeron., 1988, vol. 28, no. 6, pp. 976–979.

    Google Scholar 

  • Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery — indikator ee struktury i dinamiki (Emission of the Upper Atmosphere as an Indicator of Its Structure and Dynamics), Moscow: GEOS, 2006.

    Google Scholar 

  • Sheldon, W.R., Benbrook, J.R., and Aimedieu, P., Ozone Depletion in the Upper Stratosphere at the Down Terminator, J. Atmos.Terr. Phys., 1997, vol. 59, no. 1, pp. 1–7.

    Article  Google Scholar 

  • Tomko, A.A., Ferraro, A.J., Lee, H.S., and Mitra, A.P., A Theoretical Model of D-Region Ion Chemistry Modifications during High Power Radio Wave Heating, J. Atmos. Terr. Phys., 1980, vol. 42, pp. 275–285.

    Article  Google Scholar 

  • Utlaut, W.F. and Violett, E.J., A Summary of Vertical Incidence Radio Observations of Ionospheric Modulation, Radio Sci., 1974, vol. 9, pp. 805–903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Kulilov.

Additional information

Original Russian Text © Yu.Yu. Kulilov, V.L. Frolov, G.I. Grigor’ev, V.M. Demkin, G.P. Komrakov, A.A. Krasilnokov, V.G. Ryskin, 2013, published in Geomagnetizm i Aeronomiya, 2013, Vol. 53, No. 1, pp. 102–109.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulilov, Y.Y., Frolov, V.L., Grigor’ev, G.I. et al. Response of mesospheric ozone to the heating of the lower ionosphere by high-power HF radio emission. Geomagn. Aeron. 53, 96–103 (2013). https://doi.org/10.1134/S0016793213010118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793213010118

Keywords

Navigation