Skip to main content
Log in

Geochemistry, mineralogy and genesis of pyrophyllite deposits in the Pötürge Region (Malatya, Eastern Turkey)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

In the Pötürge (Malatya, Turkey) area pyrophyllite occurrences are common in the shear zones, mostly in the form of lenses along faults. Mineralogical investigations (XRD, FTIR and SEM) revealed that pyrophyllite, kaolinite (dickite) and quartz are present in the form of major phases and muscovite (sericite), kyanite, chlorite, and alunite are only present in the form of minor phases.

This study revealed that the existence of the kyanite phase points out to high pressure and temperature conditions which the rocks were underwent. On the other hand, the minerals such as pyrophyllite, kaolinite, and alunite are products of a low degree metamorphism (retrograde). The mineral paragenesis in the pyrophyllite deposits suggests that the formation of minerals took place in two ways: (1) the transformation of kyanite into pyrophyllite and quartz through retrograde metamorphism by a high degree temperature, (2) then pyrophyllite and probably muscovite were transformed into kaolinite and alunite through reactions with relatively low temperature hydrothermal fluids.

The geochemical data indicate that during the retrograde metamorphism the elements K, Rb, Sr, Ba, S, and Fe were mobile, the elements Si, Al, P moderately mobile to immobile and the HPS elements (Zr, Ti, and Nb) were immobile. It was shown that the formation of pyrophyllite, kaolinite and alunite was associated with depletion in alkalis, Mg, Fe and enrichment of elements including Sr, Ba, and S. Mineralogical and geochemical data suggest that parent rocks (pre-metamorphism) of the Pötürge pyrophyllite were probably kaolinite, Al-rich clays or bauxites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Harben, “Minerals and Chemicals Round-Up,” in Raw Materials for the Oilwell Drilling Industry, Ed. by P.W. Harben (Metal. Bull., London, 1978), pp. 75–81.

    Google Scholar 

  2. P. W. Harben and R. L. Bates, Geology of the Nonmetallics (Metal. Bull., New York. 1984).

    Google Scholar 

  3. N. Fuji, The Present Position of Japanese Pyrophyllite, Indust. Mineral. 194, 21–27 (1983).

    Google Scholar 

  4. K. N. Sang, “Pyrophyllite Clay Deposits in the Republic of Korea,” Indust. Mineral. 194, 30–31 (1983).

    Google Scholar 

  5. Martha L. Sykes and B. Judith Moody, “Pyrophyllite and Metamorphism in the Carolina Slate Belt,” Am. Mineral. 63, 96–108 (1978).

    Google Scholar 

  6. A. Taş, Malatya Pötürge Yöesi Profillit Yataklarinin Jeokimyasi ve Olu umu. Yuksek Lisans Tezi, ME. U. Fen. Bil. Enst. Jeoloji Anabilim Dal, (2002)

  7. L. E. Ricou, I. Agyriadis, and J. Marcoux, “L’ axe Calcaire du Taurus, un Alignement de Denetres Arabo-Africaines Sous Des Nappes radiolaritiques, ophiolitiques et metamorphiques,” Bull. Soc. Geol. Fr. 7, 1024–1044 (1975).

    Google Scholar 

  8. A. Michard, H. Whitechurch, L. E. Ricou, R. Montigny, and E. Yazgan, Tauric Subduction (Malatya-Elazi Provinces) and its Bearing on Tectonics of the Tethyan Realm in Turkey: Presented during the Meeting on the Geological Evolution of the Eastern Mediterranean (Edinburgh, 1982).

  9. E. Yazgan, “Geodynamic Evolution of the Eastern Taurus Region,” International Symposium on the Geology of the Taurus Belt, Ankara, Turkey, 1983 (Ankara, 1983), pp. 199–208.

  10. E. Yazgan, A. Michard, H. Whitechurch, and R. Montigny, “Le Taurus de Malatya (Turquie orientale), Element de la Suture Sud-Tethysienne,” Bull. Soc. Geol. France, No. 1, 59–69 (1983).

  11. E. Erdem, “Pötürge (Malatya) Metamorfitlerinin Petrografik ve Petrolojik Özellikleri,” Doktora Tezi, Firat Unv. Fen Bilimleri Enstitüsü, Elazi (1994).

  12. E. Erdem and A. F. ve Bingol, “Pötürge (Malatya) Masifindeki Gnayslarin Petrografik ve Petrolojik,” Ozellikleri Sel uk üniv. Müh. Fak. 20. Yil Jeol. Semp. Bild. 217–227 (1997).

  13. M. J. Wilson, “A Handbook of Determinative Methods in Clay Mineralogy,” (Chapman and Hall, New York, 1987).

    Google Scholar 

  14. V. C. Farmer, “The Layer Silicates,” in The Infrared Spectra of Minerals, Ed. by V. C. Farmer (Mineral. Soc., London, 1974), pp. 331–365.

    Google Scholar 

  15. A. Steckeisen, “To Each Plutonic Rock its Proper Name,” Earth Sci. Rev. 12, 1–34 (1976).

    Article  Google Scholar 

  16. H. G. F. Winkler, “Petrogenesis of Metamorphic Rocks,” (Springer Verlag, Heidelberg, 1976).

  17. H. W. Day, “A Working Model of Some Equilibria in the System Alumina-Silica-Water,” Am. J. Sci. 276, 1254–1284 (1976).

    Article  Google Scholar 

  18. H. Haas and M. J. Holdaway, “Equilibrium in the system Al2O3-SiO2-H2O Involving the Stability Limits of Pyrophyllite and Thermodynamic Data of Pyrophyllite,” Am. J. Sci. 273, 449–464 (1973).

    Article  Google Scholar 

  19. J. J. Hemley, J. W. Montaya, J. W. Marenko, and J. W. Luce, “Equilibrium in the System Al2O3-SiO2-H2O and Some General Implications for Alteration Mineralization Processes,” Econ. Geol. 75, 210–288 (1980).

    Article  Google Scholar 

  20. H. G. Dill, H. -R. Bosse, and J. Kassbohm, “Mineralogical and Chemical Studies of Volcanic-Related Argillaceous Industrial Minerals of the Central American Cordillera, Western El Salvador,” Econ. Geol. 95, 517–538 (2000).

    Google Scholar 

  21. U. Barth-Wirsching and H. Hoeller, “Experimental Studies on Zeolite Formation Conditions,” Eur. J. Mineral., Nos. 1–4, 489–506 (1989).

  22. H. G. Dill, “The Geology of Aluminium Phosphates and Sulphates of the Alunite Supergoup: A Review,” EarthSci. Rev. 53, 25–93 (2001).

    Google Scholar 

  23. R. Ek and P. Nysten, “Phosphate Mineralogy of the Höalsjöberg and Hökensås Kyanite Deposits,” Geol. Foren. Stockholm Forh. 112, 9–18, (1990).

    Article  Google Scholar 

  24. T. Finlow-Bates and E. F. Stumpfl, “The Behaviour of So-Called Immobile Elements in Hydrothermally Altered Rocks Associated with Volcanogenic Submarine-Exhalative Ore Deposits,” Mineral. Deposita 16, 319–328 (1981).

    Article  Google Scholar 

  25. H. Haas and M. J. Holdaway, Equilibrium in the System Al2O3-SiO2-H2O Involving the Stability Limits of Pyrophyllite, Am. J. Sci. 273, 449–464 (1973).

    Article  Google Scholar 

  26. B. L. Weaver and J. Tarney, “Lewisian gneiss geochemistry and Archean development models,” Earth Planet. Sci. Lett. 55, 171–180, (1981).

    Article  Google Scholar 

  27. W. H. MacLean, and P. Kranidiotis, “Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec,” Econ. Geol. 82, 951–962, (1987).

    Article  Google Scholar 

  28. D. J. Whitford, W. P. A. Mcpherson, and D. B. Wallace, “Geochemistry of the Host Rock of the Volcanogenic Massive Sulfide Deposit at the Que Riber, Tasmania,” Econ. Geol. 84, 1–21 (1989).

    Article  Google Scholar 

  29. R. K. Vance and K. C. Condie, “Geochemistry of Footwall Alteration Associated with the Early Proterozioc United Verde Massive Sulfide Deposit, Jerome, Arizona,” Econ. Geol. 82, 571–586, (1987).

    Article  Google Scholar 

  30. W. H. MacLean and T. J. Barretti, “Lithogeochemical Methods using Immobile Elements,” J. Explor. Geochem. 48, 109–133 (1993).

    Article  Google Scholar 

  31. R. L. Cullers, M. J. DiMarco, D. R. Lowe, and J. Stone, “Geochemistry of a Silicified, Felsic Volcaniclastic Suite from the Early Archaean Panorama Formation, Pilbara Block, Western Australia: an Evaluation of Depositional and Post Depositional Processes with Special Emphasis on the Rare Earth Elements,” Precambrian Res. 60, 99–116 (1993).

    Article  Google Scholar 

  32. G. M. Dipple, R. P. Wintsch, and M. S. Andrews, “Identification of the Scales of Differential Element Mobility in a Ductile Fault Zone,” J. Metamorph. Geol. 8, 645–661, (1990).

    Article  Google Scholar 

  33. B. Moine, J. P. Fortune, P. Moreau, and F. Viguier, “Comparative Mineralogy, Geochemistry, and Conditions of Formation of Two Metasomatic Talc and Chlorite Deposits: Trimouns (Pyrenees, France) and Rabenwald (Eastern Alps, Austria),” Econ. Geol. 84, 1398–1416 (1989).

    Article  Google Scholar 

  34. H. J. Stahle, M. Raith, S. Hoernes, and A. Delfs, “Element Mobility during Incipient Granulite Formation at Kabbaldurga, S. India,” J. Petrol. 28, 803–834, (1987).

    Article  Google Scholar 

  35. R. D. Vocke, G. N. Hanson, and M. Grunenfelder, “Rare Earth Mobility in the Roffna Gneiss, Switzerland,” Contrib. Mineral. Petrol. 95, 145–154, (1987).

    Article  Google Scholar 

  36. A. P. Dicken, “Evidence for Limited REE Leaching from the Roffna Gneiss, Switzerland-A Discussion of the Paper by Vocke et al. (1987)” Contrib. Mineral. Petrol. 99, 273–275 (1988).

    Article  Google Scholar 

  37. K. O’Hara, “State of Strain in Mylonites from the Western Blue Ridge Province, Southern Appalachians: the Role of Volume Loss,” J. Struct. Geol., 12, 419–430 (1990).

    Article  Google Scholar 

  38. A. F. Glazner and J. M. Bartley, “Volume Loss, Fluid Flow and Strain in Extensional Mylonites from the Central Mojave Desert, California,” J. Struct. Geol. 13, 587–694 (1991).

    Article  Google Scholar 

  39. R. L. Gresens, “Composition-Volume Relationships of Metasomatism,” Chem. Geol. 2, 47–55 (1967).

    Article  Google Scholar 

  40. J. A. Grant, “The Isocon Diagram-a Simple Solution to Gresens’ Equation for Metasomatic Alteration,” Econ. Geol. 81, 1976–1982 (1986).

    Article  Google Scholar 

  41. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks,” J. Petrol. 25, 956–983 (1984).

    Article  Google Scholar 

  42. P. Möller and G. Morteani, “On the Geochemical Fractionation of Rare-Earth Elements During the Formation of Ca-Minerals and its Application to Problems of the Genesis of Ore Deposits,” in The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies, Ed. by S. S. Augustithis, (Theophrastus, Athens, 1983), pp. 747–791.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Öner.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öner, F., Taş, A. Geochemistry, mineralogy and genesis of pyrophyllite deposits in the Pötürge Region (Malatya, Eastern Turkey). Geochem. Int. 51, 140–154 (2013). https://doi.org/10.1134/S0016702913020079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702913020079

Keywords

Navigation