Skip to main content
Log in

On the equilibrium of the layer of a nematic liquid crystal with an inhomogeneous boundary

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of the equilibrium of the layer of a nematic liquid crystal is considered in the case, in which the surface energy is quadratic with respect to the deviation of the orientation vector from a given direction (Rapini-Papoular model), and with account for the divergence terms in the quadratic internal-energy expansion in medium orientation vector gradients (Frank model). The presence of these terms leads to the appearance of director deviations in the plane parallel to the boundary. It is shown that at an appropriate choice of the undisturbed orientation for the layer there exist two critical values of the wavenumbers in whose vicinities the director oscillation amplitude can become arbitrarily large at even weak boundary disturbances, while in the case of a plane boundary the corresponding nontrivial periodic solutions are possible. The existence of one of these wavenumbers does not depend on the layer thickness, while the second wavenumber can exist when the layer thickness is greater than a certain critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-G. de Jennes, The Physics of Liquid Crystals, Oxford Univ. Press (1974).

    Google Scholar 

  2. A.S. Sonin, Introduction to Physics of Liquid Crystals [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  3. V.V. Lokhin and L.I. Sedov, “Nonlinear Tensor Functions of Several Tensor Arguments,” Prikl. Mat. Mekh. 27,393 (1963).

    MathSciNet  Google Scholar 

  4. J.L. Ericksen, “Inequalities in Liquid Crystal Theory,” Phys. Fluids 9, 1205 (1966).

    Article  ADS  Google Scholar 

  5. A. Rapini and M. Papoular, “Distortion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois,” J. Physique 30(4), 54 (1969).

    Google Scholar 

  6. A.G. Kalugin and A.N. Golubyatnikov, “On the Equilibrium Shape of a Droplet of a Nematic Liquid Crystal,” Tr. MIAN 223, 171 (1998).

    MathSciNet  Google Scholar 

  7. C. Oldano and G. Barbero, “Possible Boundary Discontinuities of the Tilt Angle in Nematic Liquid Crystals,” J. Phys. Lett. 46(10), 451 (1985).

    Article  Google Scholar 

  8. A. Sparavigna, L. Komitov, O.D. Lavrentovich, and A. Strigazzi, “Saddle-Splay and Periodic Instability in a Hybrid Aligned Nematic Layer Subjected to a Normal Magnetic Field,” J. Physique II 2, 1881 (1992).

    Article  ADS  Google Scholar 

  9. V.M. Pergamenshchik, “Surfacelike-Elasticity-Induced Spontaneous Twist Deformations and Long-Wavelength Stripe Domains in a Hybrid Nematic Layer,” Phys. Rev. E 47, 1881 (1993).

    Article  ADS  Google Scholar 

  10. V.M. Pergamenshchik, “Spontaneous Deformations of the Uniform Director Ground State Induced by the Surfacelike Elastic Terms in a Thin Planar Nematic Layer,” Phys. Rev. E 61, 3936 (2000).

    Article  ADS  Google Scholar 

  11. A.L. Alexe-Ionescu, G. Barbero, and I. Lelidis, “Periodic Deformations in Nematic Liquid Crystals,” Phys. Rev. E 66, 061705–1-10 (2002).

    Article  ADS  Google Scholar 

  12. G. Barbero, I. Lelidis, and A.K. Zvezdin, “Splay-Bend Periodic Deformation in Nematic Liquid Crystal Slabs,” Phys. Rev. E 67, 061710–1-5 (2003).

    Article  ADS  Google Scholar 

  13. G. Barbero, L.R. Evangelista, and I. Lelidis, “Spontaneous Periodic Distortions in Nematic Liquid Crystals: Dependence on the Tilt Angle,” Phys. Rev. E 67, 061708–1-4 (2003).

    Article  ADS  Google Scholar 

  14. A.N. Golubyatnikov and A.G. Kalugin, “On Short Surface Waves in Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. 366, 2731 (2001).

    Google Scholar 

  15. M. Igosheva and A. Kalugin, “Capillary Waves in Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. 526, 10 (2010).

    Article  Google Scholar 

  16. R.D. Polak, G.R. Crawford, B.C. Kostival, J.W. Doane, and S. Zumer, “Optical Determination of the Saddle-Splay Elastic Constant K24 in Nematic Liquid Crystals,” Phys. Rev. E 49, R978 (1994).

    Article  ADS  Google Scholar 

  17. A. Sparavigna, O.D. Lavrentovich, and A. Strigazzi, “Periodic Stripe Domains and Hybrid-Alignment in Nematic Liquid Crystals: Threshold Analysis,” Phys. Rev. E 49, 1344 (1994).

    Article  ADS  Google Scholar 

  18. A.G. Kalugin, “On the Role of Divergence Terms in the Frank Energy of Nematic Liquid Crystals,” Vestn. Mosk. Un-ta. Ser. 1. Mat. Mekh. No. 1, 69 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kalugin.

Additional information

Original Russian Text © A.G. Kalugin, 2015, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2015, Vol. 50, No. 2, pp. 3–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalugin, A.G. On the equilibrium of the layer of a nematic liquid crystal with an inhomogeneous boundary. Fluid Dyn 50, 181–185 (2015). https://doi.org/10.1134/S0015462815020015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462815020015

Keywords

Navigation