Skip to main content
Log in

Integrable nonconservative dynamical systems on the tangent bundle of the multidimensional sphere

  • Ordinary Differential Equations
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We construct a class of nonconservative systems of differential equations on the tangent bundle of the sphere of any finite dimension. This class has a complete set of first integrals, which can be expressed as finite combinations of elementary functions. Most of these first integrals consist of transcendental functions of their phase variables. Here the property of being transcendental is understood in the sense of the theory of functions of the complex variable in which transcendental functions are functions with essentially singular points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samsonov, V.A. and Shamolin, M.V., Body Motion in a Resisting Medium, Vestnik Moskov. Univ. Ser. 1 Mat. Mekh., 1989, no. 3, pp. 51–54.

    MathSciNet  MATH  Google Scholar 

  2. Shamolin, M.V., On the Problem of the Motion of a Body in a Resistant Medium, Vestnik Moskov. Univ. Ser. 1 Mat. Mekh., 1992, no. 1, pp. 52–58.

    MathSciNet  MATH  Google Scholar 

  3. Shamolin, M.V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela (Methods of Analysis of Variable Dissipation Dynamical Systems in Rigid Body Dynamics), Moscow, 2007.

    Google Scholar 

  4. Shamolin, M.V., On the Integrable Case in the 3D Dynamics of a Solid Interacting with a Medium, Izv. Ross. Akad. Nauk Mekh. Tverd. Tela, 1997, no. 2, pp. 65–68.

    Google Scholar 

  5. Shamolin, M.V., New Cases Integrable According to Jacobi in the Dynamics of a Solid Body Placed into Fluid Flow, Dokl. Akad. Nauk, 1999, vol. 364, no. 5, pp. 627–629.

    Google Scholar 

  6. Shamolin, M.V., The Case of Complete Integrability in Three-Dimensional Dynamics of a Rigid Body Interacting with a Medium with the Inclusion of Rotary Derivatives of the Force Moment with Respect to the Angular Velocity, Dokl. Akad. Nauk, 2005, vol. 403, no. 4, pp. 482–485.

    Google Scholar 

  7. Shamolin, M.V., A Case of Complete Integrability in the Dynamics on the Tangent Bundle of a Two-Dimensional Sphere, Uspekhi Mat. Nauk, 2007, vol. 62, no. 5, pp. 169–170.

    Article  MathSciNet  MATH  Google Scholar 

  8. Shamolin, M.V., Dynamical Systems with Variable Dissipation: Approaches, Methods, and Applications, Fund. Prikl. Mat., 2008, vol. 14, no. 3, pp. 3–237.

    Google Scholar 

  9. Chaplygin, S.A., On the Motion of Heavy Bodies in Incompressible Fluid, in Poln. sobr. soch. (Collection of Works), Leningrad, 1933, vol. 1.

    Google Scholar 

  10. Chaplygin, S.A., Izbrannye trudy (Selected Works), Moscow: Nauka, 1976.

    Google Scholar 

  11. Georgievskii, D.V. and Shamolin, M.V., Kinematics and Mass Geometry for a Solid Body with a Fixed Point in Rn, Dokl. Akad. Nauk, 2001, vol. 380, no. 1, pp. 47–50.

    MathSciNet  Google Scholar 

  12. Georgievskii, D.V. and Shamolin, M.V., Generalized Euler’s Equations Describing the Motion of a Rigid Body with a Fixed Point in Rn, Dokl. Akad. Nauk, 2002, vol. 383, no. 5, pp. 635–637.

    MathSciNet  Google Scholar 

  13. Georgievskii, D.V. and Shamolin, M.V., First Integrals of Motion Equations of a Generalized Gyroscope in Rn, Vestnik Moskov. Univ. Ser. 1 Mat. Mekh., 2003, no. 5, pp. 37–41.

    MathSciNet  Google Scholar 

  14. Trofimov, V.V. and Shamolin, M.V., Geometric and Dynamical Invariants of Integrable Hamiltonian and Dissipative Systems, Fund. Prikl. Mat., 2010, vol. 16, no. 4, pp. 3–229.

    MathSciNet  MATH  Google Scholar 

  15. Shamolin, M.V., Variety of Integrable Cases in Dynamics of Low- and Multi-Dimensional Rigid Bodies in Nonconservative Force Fields, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh., 2013, vol. 125, pp. 5–254.

    Google Scholar 

  16. Shamolin, M.V., Integrability According to Jacobi in the Problem of Motion of a Four-Dimensional Solid in a Resistant Medium, Dokl. Akad. Nauk, 2000, vol. 375, no. 3, pp. 343–346.

    Google Scholar 

  17. Shamolin, M.V., Comparison of Jacobi Integrable Cases of Plane and Spatial Motion of a Body in a Medium at Streamlining, Prikl. Mat. Mekh., 2005, vol. 69, no. 6, pp. 1003–1010.

    MathSciNet  MATH  Google Scholar 

  18. Shamolin, M.V., New Integrable Cases in Dynamics of a Medium-Interacting Body with Allowance for Dependence of Resistance Force Moment on Angular Velocity, Prikl. Mat. Mekh., 2008, vol. 72, no. 2, pp. 273–287.

    MathSciNet  MATH  Google Scholar 

  19. Shamolin, M.V., Classification of Complete Integrability Cases in Four-Dimensional Symmetric Rigid- Body Dynamics in a Nonconservative Field, Sovrem. Mat. Prilozh., 2009, vol. 65, pp. 132–142.

    Google Scholar 

  20. Shamolin, M.V., New Cases of Full Integrability in Dynamics of a Dynamically Symmetric Four-Dimensional Solid in a Nonconservative Field, Dokl. Akad. Nauk, 2009, vol. 425, no. 3, pp. 338–342.

    MathSciNet  MATH  Google Scholar 

  21. Shamolin, M.V., New Cases of Integrability in the Spatial Dynamics of a Rigid Body, Dokl. Akad. Nauk, 2010, vol. 431, no. 3, pp. 339–343.

    MathSciNet  MATH  Google Scholar 

  22. Shamolin, M.V., A Completely Integrable Case in the Dynamics of a Four-Dimensional Rigid Body in a Non-Conservative Field, Uspekhi Mat. Nauk, 2010, vol. 65, no. 1, pp. 189–190.

    Article  MathSciNet  MATH  Google Scholar 

  23. Shamolin, M.V., A New Case of Integrability in Dynamics of a 4D-Solid in a Nonconservative Field, Dokl. Akad. Nauk, 2011, vol. 437, no. 2, pp. 190–193.

    MathSciNet  Google Scholar 

  24. Arnol’d, V.I., Kozlov, V.V., and Neishtadt, A.I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki (Mathematical Aspects of Classical and Celestial Mechanics), Moscow: Akad. Nauk, 1985.

    Google Scholar 

  25. Bourbaki, N., Groupes et algébres de Lie, Paris: Hermann, 1971. Translated under the title Gruppy i algebry Li, Moscow: Mir, 1972.

    MATH  Google Scholar 

  26. Dubrovin, B.A., Novikov, S.P., and Fomenko, A.T., Sovremennaya geometriya (Modern Geometry), Moscow: Nauka, 1979.

    MATH  Google Scholar 

  27. Kozlov, V.V., Integrability and Nonintegrability in Hamiltonian Mechanics, Uspekhi Mat. Nauk, 1983, vol. 38, no. 1, pp. 3–67.

    MathSciNet  Google Scholar 

  28. Poincaré, H., O krivykh, opredelyaemykh differentsial’nymi uravneniyami (On Curves Defined by Differential Equations), Moscow–Leningrad, 1947.

    Google Scholar 

  29. Shamolin, M.V., On Integrability in Transcendental Functions, Uspekhi Mat. Nauk, 1998, vol. 53, no. 3, pp. 209–210.

    Article  MathSciNet  MATH  Google Scholar 

  30. Shamolin, M.V., Complete List of First Integrals in the Problem on the Motion of a 4D Solid in a Resisting Medium under Assumption of Linear Damping, Dokl. Akad. Nauk, 2011, vol. 440, no. 2, pp. 187–190.

    MathSciNet  Google Scholar 

  31. Shamolin, M.V., A New Case of Integrability in the Dynamics of a 4D-Rigid Body in a Nonconservative Field under the Assumption of Linear Damping, Dokl. Akad. Nauk, 2012, vol. 444, no. 5, pp. 506–509.

    MathSciNet  Google Scholar 

  32. Shamolin, M.V., A New Case of Integrability in Spatial Dynamics of a Rigid Solid Interacting with a Medium under Assumption of Linear Damping, Dokl. Akad. Nauk, 2012, vol. 442, no. 4, pp. 479–481.

    MathSciNet  Google Scholar 

  33. Shamolin, M.V., Complete List of First Integrals for Dynamic Equations of Motion of a Solid Body in a Resisting Medium with Consideration of Linear Damping, Vestnik Moskov. Univ. Ser. 1 Mat. Mekh., 2012, no. 4, pp. 44–47.

    MathSciNet  MATH  Google Scholar 

  34. Shamolin, M.V., Comparison of Complete Integrability Cases in Dynamics of a Two-, Three-, and Four- Dimensional Rigid Body in a Nonconservative Field, Sovrem. Mat. Prilozh., 2012, vol. 76, pp. 84–99.

    MathSciNet  MATH  Google Scholar 

  35. Shamolin, M.V., An Integrable Case of Dynamical Equations on so(4)×R 4, Uspekhi Mat. Nauk, 2005, vol. 60, no. 6, pp. 233–234.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shamolin.

Additional information

Original Russian Text © M.V. Shamolin, 2016, published in Differentsial’nye Uravneniya, 2016, Vol. 52, No. 6, pp. 743–759.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamolin, M.V. Integrable nonconservative dynamical systems on the tangent bundle of the multidimensional sphere. Diff Equat 52, 722–738 (2016). https://doi.org/10.1134/S0012266116060033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266116060033

Navigation