Skip to main content
Log in

Interaction of a shock wave with a closed cell aluminum metal foam

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The present investigation examines the interaction of shock waves with closed cell aluminum foam samples in a conventional shock tube. The effect of the sample thickness on shock wave attenuation and/or enhancement and the use of the foam in the sandwich structure is studied. Results in terms of incident and reflected shock pressures are obtained, and the effectiveness of the samples with and without the foam is compared. It is demonstrated that the foam density and thickness, as well as the placement of cover plates of the same material in front of and behind the foam have the most significant effect on the reflected shock pressure. It is concluded that the closed cell aluminum metal foam can be effectively used as a sacrificial layer in blast protection of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. C. Phan and J. L. Stollery, “On the Effects of Shock Wave Reflection in a Confined Space,” in Proc. 15th Int. Symp. Shock Waves Shock Tubes, Berkeley, California, USA, 1985, July 28–August 2, pp. 139–145.

    Google Scholar 

  2. B. W. Skews, A. Levy, and D. Levi-Hevroni, “Shock Wave Propagation in Porous Media,” in Handbook on Shock Waves, Ed. by G. Ben-Dor, O. Igra, and T. Elperin (Academic Press, Boston, 2000).

    Google Scholar 

  3. G. Ben-Dor, O. Igra, and T. Elperin, Handbook on Shock Waves (Academic Press, Boston, 2001).

    Google Scholar 

  4. R. Monti, “Normal Reflection on Deformable Walls,” Meccanica 5 (4), 285–296 (1970).

    Article  Google Scholar 

  5. A. A. Borisov, B. E. Gel’fand, V. M. Kudinov, B. I. Palamarchuk, V. V. Stepanov, E. I. Timofeev, and S. V. Khomik, “Shock Waves in Water Foams,” Acta Astronaut. 5 (11/12), 1027–1033 (1978).

    Article  ADS  Google Scholar 

  6. B. E. Gel’fand, A. V. Gubanov, and E. I. Timofeev, “Peculiarities of Shock-Wave Propagation in Foams,” Fiz. Goreniya Vzryva 17 (4), 129–136 (1981) [Combust., Expl., Shock Waves 17 (4), 464–469 (1981)].

    Google Scholar 

  7. L. G. Gvozdeva, Yu. M. Faresov, and V. P. Fokeev, “Interaction of Air Shock Waves with Porous Compressible Materials,” Prikl. Mekh. Tekh. Fiz. 26 (3), 111–115 (1985) [Appl.Mech. Tech. Phys. 26 (3), 401–404 (1985)].

    MATH  Google Scholar 

  8. M. Yasuhara, K. Kitagawa, S. Sakashita, Y. Tsuzaki, and S. Watanabe, “One-Dimensional Shock Wave Interaction with Rubber and Low-Porosity Foam,” Shock Waves 5 (1/2), 25–32 (1995).

    Article  ADS  Google Scholar 

  9. K. Kitagawa, M. Yasuhara, and K. Takayama, “Attenuation of Shock Waves Propagating in Polyurethane Foams,” Shock Waves 15 (6), 437–445 (2006).

    Article  ADS  Google Scholar 

  10. W. Idczak, Cz. Rymarz, and A. Spychala, “Large Deflection of a Rigid Visco-Plastic Impulsively Loaded Circular Plate,” J. Tech. Phys. 21, 473–487 (1980).

    MATH  Google Scholar 

  11. W. Idczak, Cz. Rymarz, and A. Spychala, “Studies on Shock Wave Loaded Clamped Circular Plates,” J. Tech. Phys. 22, 175–184 (1981).

    Google Scholar 

  12. J. Renard and O. Pennetier, “Nonlinear Dynamic Response of Plates Submitted to an Explosion-Numerical and Experimental Study,” in Structural Dynamics, Proc. 3th Eur. Conf. on Structural Dynamics: EURODYN’ 96 (Rotterdam, Netherlands, 1996), pp. 689–694.

    Google Scholar 

  13. S. A. Tekalur, A. Shukla, and K. Shivakumar, “Blast Resistance of Polyurea Based Layered Composite Materials,” Compos. Struct. 84 (3), 271–281 (2008).

    Article  Google Scholar 

  14. S. A. Tekalur, K. Shivakumar, and A. Shukla, “Mechanical Behavior and Damage Evolution in E-Glass Vinyl Ester and Carbon Composites Subjected to Static and Blast Loads,” Comp. B: Eng. 39 (1), 57–65 (2008).

    Article  Google Scholar 

  15. S. A. Tekalur, A. E. Bogdanovich, and A. Shukla, “Shock Loading Response of Sandwich Panels with 3-d Woven E-Glass Composite Skins and Stitched Foam Core,” Compos. Sci. Technol. 69 (6), 736–753 (2009).

    Article  Google Scholar 

  16. B. W. Skews, “The Reflected Pressure Field in the Interaction of Weak Shock Waves with a Compressible Foam,” Shock Waves 1 (3), 205–211 (1991).

    Article  ADS  Google Scholar 

  17. M. R. Baer, “A Numerical Study of Shock Wave Reflections on Low Density Foam,” Shock Waves 2 (2), 121–124 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Ouellet, D. Frost, and A. Bouamoul, “Using a Shock Tube to Predict the Response of Polymeric Foam to a Blast Loading,” J. Phys. IV. France 134, 783–787 (2006).

    Article  Google Scholar 

  19. M. W. Seitz and B. W. Skews, “Effect of Compressible Foam Properties on Pressure Amplification during Shock Wave Impact,” Shock Waves 15 (3/4), 177–197 (2006).

    Article  ADS  MATH  Google Scholar 

  20. E. Wang, N. Gardner, and A. Shukla, “The Blast Resistance of Sandwich Composites with Stepwise Graded Cores,” Int. J. Solids Struct. 46 (18/19), 3492–3502 (2009).

    Article  Google Scholar 

  21. A. Bouamoul, “Using Finite Element Methods to Predict the Response of Polymeric Foams to Both Shock Tube and Free-Field Loadings,” in 25th Int. Symp. on Ballistics (Beijing, China, May 17–21, 2010).

    Google Scholar 

  22. D. P. Mondal, M. D. Goel, and S. Das, “Effect of Strain Rate and Relative Density on Compressive Deformation Behavior of Closed Cell Aluminum-Fly Ash Composite Foam,” Mater. Des. 30, 1268–1274 (2009).

    Article  Google Scholar 

  23. D. P. Mondal, M. D. Goel, and S. Das, “Compressive Deformation and Energy Absorption Characteristics of Closed Cell Aluminum-Fly Ash Particle Composite Foam,” Mater. Sci. Eng. 507 (1/2), 102–109 (2009).

    Article  Google Scholar 

  24. D. P. Mondal and S. Das, “Effect of Thickening Agent and Foaming Agent on the Micro-Architecture and Deformation Response of Closed Cell Aluminum Foam,” Mater. Werk. 41 (5), 276–282 (2010).

    Article  Google Scholar 

  25. P. Altenhöfer and C. Mundt, “Comparison of L1d-Simulations with Measurements on a Double- Diaphragm Shock Tube,” in 8th Eur. Fluid Mech. Conf., Bad Reichenhall, Germany, September 13–16, 2010.

    Google Scholar 

  26. P. D. Smith and J. G. Hetherington, Blast and Ballistic Loading of Structures (Butterworth-Heinemann Ltd., UK, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Goel.

Additional information

Original Russian Text ©M.D. Goel, Ph. Altenhofer, V.A. Matsagar, A.K. Gupta, Ch. Mundt, S. Marburg.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 3, pp. 98–105, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, M.D., Altenhofer, P., Matsagar, V.A. et al. Interaction of a shock wave with a closed cell aluminum metal foam. Combust Explos Shock Waves 51, 373–380 (2015). https://doi.org/10.1134/S0010508215030144

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215030144

Keywords

Navigation