Skip to main content
Log in

Structural nucleic acid nanotechnology: Liquid-crystalline approach

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The properties of the particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules obtained as a result of phase exclusion of these molecules from water-salt polymer-containing solutions are briefly described. Physicochemical properties of quasinematic layers of dispersion particles and double-stranded DNA molecules in their content are taken into account in the course of developing fundamental background of the liquid-crystalline approach to the DNA structural nanotechnology. According to different versions of this approach, which is based on intraparticle gelation of cholesteric liquid-crystalline dispersions, spatial structures (DNA nanoconstructions, “rigid” DNA particles) with unique properties, are created. By means of atomic force microscopy images of “rigid” DNA particles of different type are registered. Specific properties of metallic nanoparticles (in particular, gold nanoparticles) are considered while developing the other approach to DNA structural nanotechnology, which provides the basis for “metallized” DNA nanoconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. M. Yevdokimov and V. V. Sytchev, Open Nanosci. J. 1(1), 19 (2007).

    Article  ADS  Google Scholar 

  2. Yu. M. Yevdokimov, V. I. Salyanov, and S. G. Skuridin, Nanostructures and Nanoconstructions Based on DNA (CRC Press (Taylor & Francis Group), Boca Raton — London — New York, 2012).

    Book  Google Scholar 

  3. Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, et al., in: Biotechnology 4: Systems and Synthetic Biology of Recent Developments in Biotechnology (Studium Press, New Delhi, 2014).

    Google Scholar 

  4. Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, et al., Structural DNA Nanotechnology: Liquid-Crystalline Approach (Transwold Research Network, Kerala, 2012). http://www.trnres.com/ebook.php.

    Google Scholar 

  5. N. C. Seeman, J. Theor. Biol. 99(2), 237 (1982).

    Article  Google Scholar 

  6. C. M. Niemeyer, M. Adler, S. Gao, et al., Angew. Chem. Int. Ed. 39(17), 3056 (2000).

    Article  Google Scholar 

  7. J. Shin and D. E. Bergstrom, Angew. Chem. Int. Ed. 36(1/2), 111 (1997).

    Google Scholar 

  8. E. Katz and I. Willner, Angew. Chem. Int. Ed. 43(45), 6042 (2004).

    Article  Google Scholar 

  9. Y. Minamisawa, K. Furusawa, T. Yamamoto, and T. Dobashi, Trans. Mater. Res. Soc. Jpn. 31(3), 739 (2006).

    Google Scholar 

  10. T. Dobashi, K. Furusawa, E. Kita, Y. Minamisawa, and T. Yamamoto, Langmuir 23(3), 1303 (2007).

    Article  Google Scholar 

  11. Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, and S. G. Skuridin, DNA Liquid-Crystalline Dispersions and Nanoconstructions (CRC Press (Taylor & Francis Group), Boca Raton — London — New York, 2011).

    Book  Google Scholar 

  12. Z. Dogic, D. Frenkel, and S. Fraden, Phys. Rev. E 62(3), 3925 (2000).

    Article  ADS  Google Scholar 

  13. V. A. Belyakov, V. P. Orlov, S. V. Semenov, et al., Liq. Crystals 20(6), 777 (1996).

    Article  Google Scholar 

  14. Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, et al., The CD Spectra of Double-Stranded DNA Liquid-Crystalline Dispersions (Nova Science Publishers, Inc., New York, 2011).

    Book  Google Scholar 

  15. A. Goldar, H. Thomson, and J. M. Seddon, J. Phys.: Condens. Mat. 20(3), 035102 (2008).

    ADS  Google Scholar 

  16. A. A. Tager, Physicochemistry of Polymers (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  17. R. J. Mumper and M. Jay, J. Phys. Chem. 96(21), 8626 (1992).

    Article  Google Scholar 

  18. Y.-H. Qi, Q.-Y. Zhang, and L. Xu, J. Chem. Inf. Comput. Sci. 42(6), 1471 (2002).

    Article  Google Scholar 

  19. P. A. Lessing and A. W. Erickson, J. Eur. Ceram. Soc. 23(16), 3049 (2003).

    Article  Google Scholar 

  20. P. Zhang and T. Kimura, Solvent Extract. Ion Exchange 24(2), 149 (2006).

    Article  Google Scholar 

  21. D. Gersanovsky, P. Colson, C. Houssier, and E. Fredericq, Biochim. Biophys. Acta 824(4), 313 (1985).

    Article  Google Scholar 

  22. J.-L. A. Shih and R. M. Brugger, Med. Phys. 19(3), 733 (1992).

    Article  Google Scholar 

  23. R. F. Martin, G. D’Cunha, M. Pardee, and B. J. Allen, Int. J. Radiat. Res. 54(2), 205 (1988).

    Article  Google Scholar 

  24. Yu. M. Yevdokimov, V. I. Salyanov, O. V. Kondrashina, et al., Int. J. Biol. Macromol. 37(4), 165 (2005).

    Article  Google Scholar 

  25. Yu. M. Yevdokimov, V. I. Salyanov, S. V. Akulinichev, et al., J. Biomater. Nanobiotechnol. 2(3), 281 (2011).

    Article  Google Scholar 

  26. Yu. M. Yevdokimov, V. I. Salyanov, E. V. Shtykova, et al., Open Nanosci. J. 2(1), 17 (2008).

    Article  ADS  Google Scholar 

  27. E. V. Shtykova, V. V. Volkov, V. I. Salyanov, and Yu. M. Yevdokimov, Eur. Biophys. J. 39(9), 1313 (2010).

    Article  Google Scholar 

  28. Yu. M. Yevdokimov, V. I. Salyanov, O. V. Kondrashina, et al., Zh. Eksper. Teor. Fiziki 131(3), 556 (2007).

    Google Scholar 

  29. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchyogolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, Biomedical Application (Nauka, Moscow, 2008), pp. 70–78 [in Russian].

    Google Scholar 

  30. C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology (Imperial College Press, London, 2012).

    Book  Google Scholar 

  31. T. Hegmann, H. Qi, and V. M. Marx, J. Inorg. Organomet. Polym. Mater. 17(3), 483 (2007).

    Article  Google Scholar 

  32. G. L. Nealon, R. Greget, C. Dominguez, et al., Beilstein J. Org. Chem. 8, 349 (2012). doi: 10.3762/bjoc.8.39.

    Article  Google Scholar 

  33. O. Stamatoiu, J. Mirzaei, X. Feng, and T. Hegmann, Top. Curr. Chem. 318, 331 (2012). doi: 10.1007/128-2011-233.

    Article  Google Scholar 

  34. R. Jin, G. Wu, Z. Li, C. A. Mirkin, and G. C. Schatz, J. Am. Chem. Soc. 125(6) 1643 (2003).

    Article  Google Scholar 

  35. S. G. Skuridin, V. A. Dubinskaya, E. V. Shtykova, et al., Biol. Membrany 28(3), 191 (2011).

    Google Scholar 

  36. S. T. Zakhidov, S.M. Pavlyuchenkova, A. V. Samoilov, et al., Izv. RAN Ser. Biol., No. 6 (2013) (in press).

    Google Scholar 

  37. T. M. Herne and M. J. Tarlov, J. Am. Chem. Soc. 119(38), 8916 (1997).

    Article  Google Scholar 

  38. Nak Han Jang, Bull. Korean Chem. Soc. 23(12), 1790 (2002).

    Article  Google Scholar 

  39. D. Y. Petrovykh, H. Kimura-Suda, L. J. Whitman, and M. J. Tarlov, J. Am. Chem. Soc. 125(17), 5219 (2003).

    Article  Google Scholar 

  40. W. J. Parak, T. Pellegrino, C. M. Micheel, et al., Nano Lett. 3(1), 33 (2003).

    Article  ADS  Google Scholar 

  41. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, et al., J. Am. Chem. Soc. 122(19), 4640 (2000).

    Article  Google Scholar 

  42. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19(1–2), 35 (1961).

    Article  ADS  Google Scholar 

  43. Yu. M. Yevdokimov, V. I. Salyanov, E. I. Katz, and S. G. Skuridin, Acta Naturae 4(4), 80 (2012).

    Google Scholar 

  44. Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, et al., J. Biomater. Nanobiotechnol. 2(4), 461 (2011).

    Article  Google Scholar 

  45. Yu. M. Yevdokimov, E. V. Shtykova, V. I. Salyanov, and S. G. Skuridin, Biophysics 58(2), 148 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Yevdokimov.

Additional information

Original Russian Text © Yu.M. Yevdokimov, V.I. Salyanov, E.I. Katz, S.G. Skuridin, 2013, published in Biofizika, 2013, Vol. 58, No. 6, pp. 987–1004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yevdokimov, Y.M., Salyanov, V.I., Katz, E.I. et al. Structural nucleic acid nanotechnology: Liquid-crystalline approach. BIOPHYSICS 58, 775–790 (2013). https://doi.org/10.1134/S0006350913060079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913060079

Keywords

Navigation