Skip to main content
Log in

Proton cycles through membranes in bacteria: Relationship between proton passive and active fluxes and their dependence on some external physico-chemical factors under fermentation

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This paper represents H+ circles through the bacterial membranes, their peculiarities and relationship with ATP synthesis or hydrolysis, utilization or accumulation of energy are considered. Data on passive and active proton (H+) fluxes through the bacterial membranes are analyzed and their relationship with membrane H+ conductance \(\left( {G_m^{H^ + } } \right)\) and permeability for H+ \(\left( {P_{H^ + } } \right)\) is discussed. Methods for determination of bacterial membrane \(G_m^{H^ + }\) are presented and some difficulties in obtaining and interpreting data are pointed out. Different ways and mechanisms of passive and active H+ fluxes, including a role of membrane lipids in H+ transfer, importance of phase transitions in lipid bilayers, operation of protonophores as well as H+ translocation via the F0 factor of the F0F1-ATPase, are discussed. Dependence of \(G_m^{H^ + }\) for Escherichia coli, Enterococcus hirae, Streptococcus lactis and other bacteria on some external physico-chemical growth factors, particularly, on pH and oxidation reduction potential as well as influence of osmotic stress on \(G_m^{H^ + }\) and H+ active fluxes through the bacterial membrane under fermentation have been shown. The relationship between \(G_m^{H^ + }\), \(P_{H^ + }\) and active H+ fluxes through a membrane is proposed, possible mechanisms of relationship between their alterations depending on pH and oxidation reduction potential are discussed. The results are important for understanding the structural and functional properties of bacterial membranes determining H+ cycles operation and mechanisms of H+ fluxes essential in adaptation of bacteria to altered environment conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Skulachev, Energetics of Biological Membranes (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  2. A. B. Rubin, Biophysics (KD “Universitet,” Moscow, 2004), Vol. 2 [in Russian].

    Google Scholar 

  3. W. D. Stein, Transport and Diffusion Across Cell Membranes (Acad. Press, Orlando, 1986).

    Google Scholar 

  4. D. G. Nicholls and S. J. Ferguson, Bioenergetics — 3 (Acad. Press, London, 2002).

    Google Scholar 

  5. P. Mitchell, Biol. Rev. Cambridge Phil. Soc. 11, 445 (1966).

    Google Scholar 

  6. D. G. Nicholls, Biosci. Rep. 17, 251 (1997).

    Google Scholar 

  7. D. R. Bond and J. R. Russel, Microbiology 146, 687 (2000).

    Google Scholar 

  8. P. C. Maloney, J. Bacteriol. 140, 197 (1979).

    Google Scholar 

  9. C. Riondet, R. Cachon, Y. Wache, et al., Eur. J. Biochem. 262, 595 (1999).

    Google Scholar 

  10. N. Mirzoyan, A. Pepoyan, and A. Trchounian, FEMS Microbiol Lett. 254, 81 (2006).

    Google Scholar 

  11. D.H. Kim and Y. H. Jin, Br. J. Nutr. 88, S89 (2002).

    Google Scholar 

  12. F. Guarder and J. R. Malagelada, Lancet 361, 512 (2003).

    Google Scholar 

  13. D. W. Tempest and O.M. Neijssel, Annu. Rev. Microbiol. 38, 459 (1984).

    Google Scholar 

  14. M. M. Mulder, M. J. Teixeira de Mattos, P. W. Postma, and K. van Dam, Biochim. Biophys. Acta 851, 223 (1986).

    Google Scholar 

  15. S. M. Martirosov and A. A. Trchunyan, Biofizika 29, 254 (1984).

    Google Scholar 

  16. V. N. Ter-Nikogosyan, A. A. Trchunyan, and S. M. Martirosov, Biofizika 31, 464 (1986).

    Google Scholar 

  17. V. N. Ter-Nikogosyan, A. A. Trchunyan, and S. M. Martirosov, Biofizika 33, 310 (1988).

    Google Scholar 

  18. E. P. Bakker and F. M. Harold, J. Biol. Chem. 255, 433 (1980).

    Google Scholar 

  19. S. M. Martirosov and A. A. Trchounian, Bioelectrochem. Bioenerg. 15, 417 (1986).

    Google Scholar 

  20. A. A. Trchunyan, Biofizika 35, 889 (1990).

    Google Scholar 

  21. A. A. Trchunyan, Uspekhi Sovrem. Biologii 117, 668 (1997).

    Google Scholar 

  22. A. Trchounian, Biochem. Biophys. Res. Commun. 315, 1051 (2004).

    Google Scholar 

  23. A. Trchounian, Y. Ohanjanyan, K. Bagramyan, et al., Biosci. Rep. 18, 143 (1998).

    Google Scholar 

  24. R. Otto, Arch. Microbiol. 140, 225 (1984).

    Google Scholar 

  25. F. M. Harold and J. R. Baarda, J. Biol. Chem. 244, 2261 (1969).

    Google Scholar 

  26. P. C. Maloney, J. Bacteriol. 132, 564 (1977).

    Google Scholar 

  27. P. C. Maloney and F.C. Hansen, J. Membr. Biol. 66, 63 (1982).

    Google Scholar 

  28. E. S. Ogandjanyan, A. A. Trchounian, and S. M. Martirosov, Bioelectrochem. Bioenerg. 17, 503 (1987).

    Google Scholar 

  29. J. B. Russell and H. J. Strobel, Arch. Microbiol. 153, 378 (1990).

    Google Scholar 

  30. A. Azzi, R. P. Casey, and M. J. Nalecz, Biochim. Biophys. Acta 768, 209 (1984).

    Google Scholar 

  31. S. M. Martirosov, L. S. Petrosyan, A. A. Trchounian, and A. G. Vardanyan, Bioelectrochem. Bioenerg. 8, 613 (1981).

    Google Scholar 

  32. A. A. Trchounian, V. A. Ter-Nikogossian, and S. M. Martirosov, Bioelectrochem. Bioenerg. 17, 183 (1987).

    Google Scholar 

  33. A. A. Trchounian and A. G. Vardanian, Stud. Biophys. 132, 235 (1989).

    Google Scholar 

  34. A. A. Trchounian, K. A. Bagramyan, E. S. Ogandjanian, et al., Bioelectrochem. Bioenerg. 39, 13 (1996).

    Google Scholar 

  35. W. N. Konings, J. S. Lolkema, and H. Bolhuis, Antonie van Leevenhock 71, 117 (1997).

    Google Scholar 

  36. A. H. Tran and G. Unden, Eur. J. Biochem. 251, 538 (1998).

    Google Scholar 

  37. J. S. Lolkema, A. Abbing, K. J. Hellinrwerif, and W. N. Konings, Biochim. Biophys. Acta 681, 85 (1982).

    Google Scholar 

  38. H. Hirata, K. Ohno, N. Sone, et al., J. Biol. Chem. 261, 9839 (1986).

    Google Scholar 

  39. P. R. van Iwaarden, A. J. Driessen, and W. N. Konings, Biochim. Biophys. Acta 1113, 161 (1992).

    Google Scholar 

  40. K. Akopyan and A. Trchunyan, Biophysics (Moscow) 50, 595 (2005).

    Google Scholar 

  41. G. R. Bender, S. V. W. Sutton, and R.E Marquis, Infect. Immun. 53, 331 (1986).

    Google Scholar 

  42. N. Rius, M. Sole, A. Francia, and J.-G. Loren, FEMS Microbiol. Lett. 120, 291 (1994).

    Google Scholar 

  43. N. Rius and J.-G. Loren, Appl. Environ. Microbiol. 64, 1344 (1998).

    Google Scholar 

  44. A. M. Fordyce, L. Crow, and T. D. Thomas, Appl. Environ. Microbiol. 483, 332 (1984).

    Google Scholar 

  45. D. Sogomonyan, K. Akopyan and A. Trchunyan, Prikl. Biokhim. Mikrobiol. 47, 33 (2011).

    Google Scholar 

  46. T. Bauchop and S. R. Elsden, J. Gen. Microbiol. 23, 457 (1960).

    Google Scholar 

  47. W. DeVries, W. M. C. Kapteijn, E. G. Van der Beck, and A. H. Stouthamer, J. Gen. Microbiol. 63, 333 (1970).

    Google Scholar 

  48. J. L. Slonczewski, J. H. Foster, and K. M. Gillen, Microbioogy. An Evonving Science (W. W. Norton &Co., New York, London, 2009).

    Google Scholar 

  49. A. H. Stouthamer and C. W. Bettenhaussen, Biochim. Biophys. Acta 301, 53 (1973).

    Google Scholar 

  50. F. M. Harold, The Vital Force: a Study of Bioenergetics (W. H. Freeman & Co., New York, 1986).

    Google Scholar 

  51. J. B. Russell, Arch. Microbiol. 155, 559 (1991).

    Google Scholar 

  52. G. M. Cook and J. B. Russel, Appl. Environ. Microbiol. 60, 1942 (1994).

    Google Scholar 

  53. J. B. Russell, J. Mol. Microbiol. Biotechnol. 13, 1 (2007).

    Google Scholar 

  54. M. A. Taylor and J. B. Jackson, Biochim. Biophys. Acta 891, 242 (1987).

    Google Scholar 

  55. M. D. Brand, L.-F. Chen, E. K. Ainscow, et al., Biochim. Biophys. Acta 1187, 132 (1994).

    Google Scholar 

  56. P. Mitchell and J. Moyle, Biochem. J. 104, 588 (1967).

    Google Scholar 

  57. K. Akopyan, E. Zakharyan, G. Kirakosyan, et al., Biophysics (Moscow) 47, 985 (2002).

    Google Scholar 

  58. C. Riondet, R. Cachon, Y. Wache, et al., Appl. Microbiol. Biotechnol. 53, 476 (2000).

    Google Scholar 

  59. K. Akopyan and A. Trchounian, Cell Biochem. Biophys. 46, 201 (2006).

    Google Scholar 

  60. D. W. Deamer and J. W. Nichols, J. Membr. Biol. 107, 91 (1989).

    Google Scholar 

  61. M. J. Franklin, W. S. Brusilow, and D. J. Woodbury, Biophys J. 87, 3594 (2004).

    ADS  Google Scholar 

  62. V. F. Antonov, Biophysics (Vlados, Moscow, 2000) [in Russian].

    Google Scholar 

  63. L. Shabala and T. Ross, Res. Microbiol. 159, 458 (2008).

    Google Scholar 

  64. I. G. Abidor, V. B. Arakelyan, L. V. Chernomordik, et al., Bioelectrochem. Bioenerg. 6, 37 (1979).

    Google Scholar 

  65. S. May, Eur. Phys. J. 3, 37 (2000).

    Google Scholar 

  66. J. Zimmerberg, Trends Cell Biol. 11, 233 (2001).

    Google Scholar 

  67. V. V. Malev, L. V. Schagina, P. A. Gurnev, et al., Biophys. J. 82, 1985 (2002).

    Google Scholar 

  68. V. F. Antonov, A. A. Anosov, V. P. Norik, and E. A. Smirnova, Biophysics (Moscow) 50, 756 (2005).

    Google Scholar 

  69. E. S. Hyman, in Abstr. Biophys. Soc. (1983), p. 43.

    Google Scholar 

  70. M. Ikeda and D. Oesterhelt, Biochemistry 29, 2065 (1990).

    Google Scholar 

  71. I. Toyoshima and T. E. Thompson, Biochemistry 14, 1518 (1985).

    Google Scholar 

  72. M. Mangel and G. L. Jendrasiak, Chem. and Phys. 3, 167 (1986).

    Google Scholar 

  73. S. Noguchi and S. J. Koga, Gen. Appl. Microbiol. 2, 41 (1987).

    Google Scholar 

  74. A. Berczi and H. Asard, Trends Plant Sci. 8, 250 (2003).

    Google Scholar 

  75. V. F. Antonov, E. A. Smirnova, A. A. Anosov, et al., Biophysics (Moscow) 53, 390 (2008).

    Google Scholar 

  76. K. Inoue and T. Kitagawa, Biochim. Biophys. Acta 363, 361 (1984).

    Google Scholar 

  77. V. F. Antonov, A. A. Anosov, V. P. Norik, et al., Eur. Biophys. J. 32, 55 (2003).

    Google Scholar 

  78. M. C. Blok, E. C. M. Neut-Kok, and L. L. Van Deenen, Biochim. Biophys. Acta 406, 187 (1985).

    Google Scholar 

  79. V. V. Petrov, V. S. Zubarev, and E. A. Korepanova, Biofizika 31, 19 (1980).

    Google Scholar 

  80. D. W. Deamer, J. Bioenerg. Biomembr. 19, 457 (1987).

    Google Scholar 

  81. J. Gutknecht, Mol. Cel Biochem. 114, 3 (1992).

    Google Scholar 

  82. S. McLaughin and J. P. Dilger, Physiol. Rev. 60, 825 (1980).

    Google Scholar 

  83. S. M. Saparov, Yu. N. Antonenko, and P. Pohl, Biophys. J. 90, L86 (2006).

    Google Scholar 

  84. A. Missner, P. Kuger, Yu. Antonenko, and P. Pohl, Proc. Natl. Acad. Sci. USA 105, E123 (2008).

    ADS  Google Scholar 

  85. P. Jezek, D. E. Orosz, M. Modriansky, and K. D. Garlid, J. Biol. Chem. 269, 26184 (1996).

    Google Scholar 

  86. P. Jezek, M. Modriansky, and K. D. Garlid, FEBS Lett. 408, 166 (1997).

    Google Scholar 

  87. K. D. Garlid, M. Jaburek, and P. Jezek, Biochem. Soc. Trans. 29, 803 (2001).

    Google Scholar 

  88. M. Klingenberg, Biochemistry 27, 781 (1988).

    Google Scholar 

  89. M. Klingenberg, Biochim. Biophys. Acta 1797, 579 (2010).

    Google Scholar 

  90. W. Jarmuszkiewich, A. Woyda-Ploszczyca, N. Antos-Krzeminska, and F.E. Sluse, Biochim. Biophys. Acta 1797, 792 (2010).

    Google Scholar 

  91. S. M. Martirosov and A. A. Trchounian, Bioelectrochem. Bioenerg. 8, 25 (1981).

    Google Scholar 

  92. R. H. Fillingame and S. Divall, Novartis Found. Symp. 221, 218 (1999).

    Google Scholar 

  93. A. G. Leslie and J. E. Walker, Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 465 (2000).

    Google Scholar 

  94. H. Noji and M. Yoshida, J. Biol. Chem. 276, 1665(2001).

    Google Scholar 

  95. A. E. Senior, S. Nadanaciva, and J. Weber, Biochim. Biophys. Acta 1553, 188 (2002).

    Google Scholar 

  96. B. A. Feniouk, M. A. Kozlova, D. A. Knorre, et al., Biophys. J. 86, 4094 (2004).

    Google Scholar 

  97. J. Weber, Biochim. Biophys. Acta 1757, 1162 (2006).

    Google Scholar 

  98. B. A. Feniouk, T. Suzuki, and M. Yoshida, J. Biol. Chem. 282, 764 (2007).

    Google Scholar 

  99. R. A. Schemidt, J. Qui, J. R. Wiliams, and W. S. Brusilow, J. Bacteriol. 180, 3205 (1998).

    Google Scholar 

  100. N. Mnatsakanyan, K. Bagramyan, A. Vassilian, etal., Biosci. Rep. 22, 421 (2002).

    Google Scholar 

  101. A. A. Trchunyan, E. S. Ogandzhanyan, and G. D. Mironova, Biofizika 36, 102 (1991).

    Google Scholar 

  102. R. A. Schemidt, C. K. Brauning, A. Bouvier, and W. S. Brusilow, J. Biol. Chem. 271, 33390 (1996).

    Google Scholar 

  103. S. Fisher, C. Etzold, P. Turina, et al., Eur. J. Biochem. 225, 167 (1994).

    Google Scholar 

  104. M. K. Al-Shawi, C. J. Ketchum, and R. K. Nakamoto, J. Biol. Chem. 272, 2300 (1997).

    Google Scholar 

  105. K. Altendorf, W. Stalz, J. Greie, and G. J. Deckers-Hebestreit, J. Exp. Biol. 203, 19 (2000).

    Google Scholar 

  106. T. Krebstakies, B. Zimmermann, P. Gräber, et al., J.Biol. Chem. 280, 33338 (2005).

    Google Scholar 

  107. H. Seelert, A. Poetsch, N. A. Dencher, et al., Nature 405, 418 (2000).

    ADS  Google Scholar 

  108. W. Jiang, J. Hermolin, and R. H. Fillingame, Proc. Natl. Acad. Sci. USA 98, 4966 (2001).

    ADS  Google Scholar 

  109. D. J. Muller, N. A. Dencher, T. Meier, et al., FEBS Lett. 504, 219 (2001).

    Google Scholar 

  110. R. H. Fillingame and O. Y. Dmitriev, Biochim. Biophys. Acta 1565, 232 (2002).

    Google Scholar 

  111. C. M. Angevine and R. H. Fillingame, J. Biol. Chem. 278, 6066 (2003).

    Google Scholar 

  112. Y. Sambongi, Y. Iko, M. Tanabe, et al., Science 286, 1722 (1999).

    Google Scholar 

  113. S. P. Tsunoda, R. Aggeler, H. Noji, et al., FEBS Lett. 470, 244 (2000).

    Google Scholar 

  114. S.P. Tsunoda, R. Aggeler, M. Yoshida, and R. A. Capaldi, Proc. Natl. Acad. Sci. USA 98, 898 (2001).

    ADS  Google Scholar 

  115. T. Suzuki, Y. Ozaki, N. Sone, et al., Proc. Natl. Acad. Sci. USA 104, 20776 (2007).

    ADS  Google Scholar 

  116. Y. Ozaki, T. Suzuki, Y. Kuruma, et al., Biochem. Biophys. Res. Commun. 367, 663 (2008).

    Google Scholar 

  117. Y. Kagawa and T. Hamamoto, Biochem. Biophys. Res. Commun. 240, 247 (1997).

    Google Scholar 

  118. P. D. Boyer, J. Biol. Chem. 277, 39045 (2002).

    Google Scholar 

  119. M. G. Duser, N. Zarrabi, D. J. Cipriano, et al., EMBO J. 28, 2689 (2009).

    Google Scholar 

  120. V. K. Rastogi and M. E. Girvin, Nature 18, 263 (1999).

    ADS  Google Scholar 

  121. D. J. Cipriano, K. S. Wood, Y. Bi, and S. D. Dunn, J. Biol. Chem. 281, 12408 (2006).

    Google Scholar 

  122. E. Angov, T. C. Ng, and W. S. Brusilow, J. Bacteriol. 173, 407 (1991).

    Google Scholar 

  123. A. A. Trchounian, Bioelectrochem. Bioenerg. 13, 231 (1984).

    Google Scholar 

  124. E. Arikado, H. Ishihara, T. Ehara, et al., Eur. J. Biochem. 259, 262 (1999).

    Google Scholar 

  125. N. Mnatsakanyan, A. Vasilyan, K. Bagramyan, and A. Trchunyan, Biol. Membrany 19, 181 (2002).

    Google Scholar 

  126. A. Vasilyan and A. Trchunyan, Biofizika 53, 281 (2008) [No English version].

    Google Scholar 

  127. S. B. Wang, D. B. Foster, J. Bucker, et al., Circ. Res. 109, 750 (2011).

    Google Scholar 

  128. Y. Kim, H. Konno, Y. Sugano, and T. Hisabori, J. Biol. Chem. 286, 9071 (2011).

    Google Scholar 

  129. I. Y. Petrushanko, S. Yakushev, V. A. Mitkevich, et al., J. Biol. Chem. 287, 32195 (2012).

    Google Scholar 

  130. M. M. Gallogry and J. J. Mieyal, Curr. Opin. Pharmacol. 7, 381 (2007).

    Google Scholar 

  131. E. A. Dawes, Quantitative Problems in Biochemistry (Longman, London. 1980).

    Google Scholar 

  132. K. A. Bagramyan and S. M. Martirosov, FEBS Lett. 246, 149 (1989).

    Google Scholar 

  133. R. G. Visser, K. J. Heingwerf, and W. N. Konings, J. Bioenerg. Biomembr. 16, 295 (1984).

    Google Scholar 

  134. H. Saito and H. Kobayashi, Sci. Prog. 86, 271 (2003).

    Google Scholar 

  135. W. N. Konings, Antonie van Leeuwenhoek 90, 325 (2006).

    Google Scholar 

  136. A. Trchounian, E. Ohandjanian, and P. Vanian, Curr.Microbiol. 29, 187 (1994).

    Google Scholar 

  137. M. Futai, H. Omote, and M. Maeda, Tanpakushitsu Kakusan Koso 39, 1141 (1994).

    Google Scholar 

  138. D. Bald, H. Noji, M. Yoshida, et al., J. Biol. Chem. 276, 39505 (2001).

    Google Scholar 

  139. L. N. Csonka and A. D. Hanson, Annu. Rev. Microbiol. 45, 569 (1991).

    Google Scholar 

  140. I. R. Booth and C. F. Higgins, FEMS Microbiol. Rev. 6, 239 (1990).

    Google Scholar 

  141. W. Epstein, Progr. Nucl. Acid Research Mol. Biol. 75, 293 (2003).

    Google Scholar 

  142. B. Poolman, J. J. Spitzer, and J. M. Wood, Biochim. Biophys. Acta 1666, 88 (2002).

    Google Scholar 

  143. T. Romantsov and J. M. Wood, Biochim. Biophys. Acta 1788, 2092 (2009).

    Google Scholar 

  144. J. B. Russell and F. Diez-Gonzalez, Adv. Microb. Physiol. 39, 205 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trchounian.

Additional information

Original Russian Text © K. Akopyan, A. Trchounian, 2013, published in Biofizika, 2013, Vol. 58, No. 5, pp. 796–812.

Editor’s Note: This is the closest possible equivalent of the ‘original’ publication with all its practical details, statements and terminology, phrasing and style, painstakingly prepared so that an enduring reader can make sound judgment; English title and Abstract provided by authors. A.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akopyan, K., Trchounian, A. Proton cycles through membranes in bacteria: Relationship between proton passive and active fluxes and their dependence on some external physico-chemical factors under fermentation. BIOPHYSICS 58, 624–639 (2013). https://doi.org/10.1134/S0006350913050023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913050023

Keywords

Navigation