Skip to main content
Log in

Human serum albumin modified under oxidative/halogenative stress enhances luminol-dependent chemiluminescence of human neutrophils

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It is shown that human serum albumin, previously treated with HOCl (HSA-Cl), enhances luminol-dependent chemiluminescence of neutrophils activated by phorbol-12-myristate-13-acetate (PMA). The enzyme-linked immunosorbent assay revealed that addition of HSA-Cl to neutrophils promotes exocytosis of myeloperoxidase. Inhibitor of myeloperoxidase — 4-aminobenzoic acid hydrazide, without any effect on lucigenin-dependent chemiluminescence of neutrophils stimulated with PMA, effectively suppressed luminol-dependent chemiluminescence (IC50 = 20 μM) under the same conditions. The transfer of the cells from medium with HSA-Cl and myeloperoxidase to fresh medium abolished an increase in PMA-induced luminol-dependent chemiluminescence, but not the ability of neutrophils to respond to re-addition of HSA-Cl. A direct and significant (r = 0.75, p < 0.01) correlation was observed between the intensity of PMA stimulated neutrophil chemiluminescence response and myeloperoxidase activity in the cell-free media after chemiluminescence measurements. These results suggest the involvement of myeloperoxidase in the increase of neutrophil PMA-stimulated chemiluminescence response in the presence of HSA-Cl. A significant positive correlation was found between myeloperoxidase activity in blood plasma of children with severe burns and the enhancing effects of albumin fraction of the same plasma on luminol-dependent chemiluminescence of PMA-stimulated donor neutrophils. These results support a hypothesis that proteins modified in reactions involving myeloperoxidase under oxidative/halogenative stress, stimulate neutrophils, leading to exocytosis of myeloperoxidase, a key element of halogenative stress, and to closing a “vicious circle” of neutrophil activation at the inflammatory site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Klebanoff, J. Leukoc. Biol. 77, 598 (2005).

    Article  Google Scholar 

  2. O. M. Panasenko, I. V. Gorudko, A. M. Kovaleva, et al., Vestn. Yuzhn. Nauch. Tsentra RAN 6(3), 73 (2010).

    Google Scholar 

  3. O. M. Panasenko, J. Arnhold, and V. I. Sergienko, Biol. Membrany 19, 403 (2002).

    Google Scholar 

  4. O. Skaff, D. I. Pattison, and M. J. Davies, Chem. Res. Toxicol. 20, 1980 (2007).

    Article  Google Scholar 

  5. M. D. Rees, T. N. Mcniven, and M. J. Davies, Biochem. J. 401, 587 (2007).

    Article  Google Scholar 

  6. D. I. Pattison and M. J. Davies, Current Medicinal Chemistry 13, 3271 (2006).

    Article  Google Scholar 

  7. C. L. Hawkins, D. I. Pattison, and M. J. Davies, Amino Acids 25, 259 (2003).

    Article  Google Scholar 

  8. P. Salavej, H. Spalteholz, and J. Arnhold, Free Radic. Biol. Med. 40, 516 (2006).

    Article  Google Scholar 

  9. I. V. Gorudko, T. V. Vakhrusheva, A. V. Mukhortova, et al., Biol. Membrany 27, 314 (2010).

    Google Scholar 

  10. G. Körmöczi, U. M. Wölfel, A. R. Rosenkranz, et al., J. Immunol. 167, 451 (2001).

    Google Scholar 

  11. V. Witko-Sarsat, V. Gausson, A. T. Nguyen, et al., Kidney Int. 64, 82 (2003).

    Article  Google Scholar 

  12. L. Fialkow, Y. Wang, and G. P. Downey, Free Radic. Biol. Med. 42, 153 (2007).

    Article  Google Scholar 

  13. R. G. Midwinter, M. C. Vissers, and C. C. Winterbourn, Arch. Biochem.Biophys. 394, 13 (2001).

    Article  Google Scholar 

  14. A. J. Szuchman-Sapir, D. I. Pattison, M. J. Davies, and P. K. Witting, Free Radic. Biol. Med. 48, 35 (2010).

    Article  Google Scholar 

  15. O. M. Panasenko and V. I. Sergienko, Vestn. Ross. AMN, No. 1, 27 (2010).

    Google Scholar 

  16. R. K. Schindhelm, L. P. van der Zwan, T. Teerlink, and P. G. Scheffer, Clinical Chemistry 55, 1462 (2009).

    Article  Google Scholar 

  17. L. J. Hazell, G. Baernthaler, and R. Stocker, Free Radic. Biol. Med. 31, 1254 (2001).

    Article  Google Scholar 

  18. E. Thomson, S. Brennan, R. Senthilmohan, et al., Free Radic. Biol. Med. 49, 1354 (2010).

    Article  Google Scholar 

  19. H. Mita, N. Higashi, M. Taniguchi, et al., Clin. Exp. Allergy 34, 931 (2004).

    Article  Google Scholar 

  20. M. Roche, P. Rondeau, N. R. Singh, et al., FEBS Lett. 582, 1783 (2008).

    Article  Google Scholar 

  21. F. A. Summers, P. E. Morgan, M. J. Davies, and C. L. Hawkins, Chem. Res. Toxicol. 21, 1832 (2008).

    Article  Google Scholar 

  22. L. R. DeChatelet, G. D. Long, P. S. Shirley, et al., J. Immunol. 129, 1589 (1982).

    Google Scholar 

  23. E. P. Brestel, Biochem. Biophys. Res. Commun. 126, 482 (1985).

    Article  Google Scholar 

  24. O. M. Panasenko, A. V. Chekanov, I. I. Vlasova, et al., Biophysics (Moscow) 53, 268 (2008).

    Article  Google Scholar 

  25. Y. Li, H. Zhu, P. Kuppusamy, V. Roubaud, et al., J. Biol. Chem. 273, 2015 (1998).

    Article  Google Scholar 

  26. J. C. Morris, J. Phys. Chem. 70, 3798 (1966).

    Article  Google Scholar 

  27. M. Gazda and D. W. Margeum, Inorg. Chem. 33, 118 (1994).

    Article  Google Scholar 

  28. A. V. Sokolov, M. O. Pulina, K. V. Ageeva, et al., Biokhimiya 72, 506 (2007).

    Google Scholar 

  29. R. Vasileva, M. Jakob, and F. J. Hasko, Chromatogr. 216, 279 (1981).

    Article  Google Scholar 

  30. P. C. Andrews, C. Parens, and N. I. Krinsky, Arch. Biochem. Biophys. 228, 439 (1984).

    Article  Google Scholar 

  31. I. V. Gorudko, O. S. Cherkalina, A. V. Sokolov, et al., Bioorg. Khimiya 35, 1 (2009).

    Google Scholar 

  32. E. V. Mikhal’chik, Yu. A. Piterskaya, V. A. Lipatova, et al., Byul. Eksperim. Biol. Med. 147, 696 (2009).

    Google Scholar 

  33. E. Malle, C. Woenckhaus, G. Waeg, et al., Am. J. Pathol. 150, 603 (1997).

    Google Scholar 

  34. E. V. Mikhal’chik, L. Yu. Pen’kov, L. I. Budkevich, et al., Detskaya Khirurgiya, No. 3, 40 (2005).

    Google Scholar 

  35. J. Arnhold, S. Hammerschmidt, M. Wagner, et al., Biomed. Biochim. Acta 49, 991 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Astamirova.

Additional information

Original Russian Text © E.V. Mikhalchik, N.V. Smolina, T.S. Astamirova, I.V. Gorudko, D.V. Grigorieva, V.A. Ivanov, A.V. Sokolov, V.A. Kostevich, S.N. Cherenkevich, O.M. Panasenko, 2013, published in Biofizika, 2013, Vol. 58, No. 4, pp. 681–689.

Editor’s Note: This is a closest equivalent of the original publication with all its practical details, statements and terminology, phrasing and style, so the reader can make sound judgment; English title and Abstract provided by authors. A.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhalchik, E.V., Smolina, N.V., Astamirova, T.S. et al. Human serum albumin modified under oxidative/halogenative stress enhances luminol-dependent chemiluminescence of human neutrophils. BIOPHYSICS 58, 530–536 (2013). https://doi.org/10.1134/S0006350913040118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913040118

Keywords

Navigation