Skip to main content
Log in

Experimental and modeling investigation of the mechanism of synaptic vesicles recycling

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Under the condition of microelectrode recording and fluorescence microscopy with dye FM 1-43 the research of exo-/endocytosis of synaptic vesicles in motor nerve terminals (NT) of frog cutaneous pectoris and white mice diaphragm muscles during high frequency stimulation (20 imp/s) was carried out. A mathematical modeling allowed us to conclude that the obtained experimental data can be explained in the following framework. Three pools of synaptic vesicles are involved in neurotransmitter release in the frog motor NT. Recovery of these pools is provided by endocytosis of two types: fast endocytosis with limited capacity and slow endocytosis. Fast-reconstructing vesicles refill the mobilization pool and slow endocytosis recovers the reserve pool. Our modeling investigation has revealed in frog NT independent recruiting of reserve and mobilization pools to the neurotransmitter secretion, i.e. this pools work concurrently. Experimental data, obtained on mice preparations, are well described with the framework of two-pools model including single type of endocytosis (fast endocytosis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Heuser and T. S. Reese, J. Cell Biol. 57, 315 (1973).

    Article  Google Scholar 

  2. T. M. Miller and J. E. Heuser, J. Cell Biol. 98(2), 685 (1984).

    Article  Google Scholar 

  3. H. Gad, P. Low, E. Zotova, et al., Neuron. 21(3), 607 (1998).

    Article  Google Scholar 

  4. J. Del Castillo and B. Katz, J. Physiol. (Gr. Brit.). 124, 560 (1954).

    Google Scholar 

  5. W. J. Betz and J. K. Angelson, Annu. Rev. Physiol. 60, 347 (1998).

    Article  Google Scholar 

  6. A. L. Zefirov, A. V. Zakharov, R. D. Mukhamedzyanov, et al., Ros. Fiziol. Zh. im. Sechenova 94(2), 129 (2008).

    Google Scholar 

  7. W. J. Betz, F. Mao, and G. S. Bewick, J. Neurosci. 12(2), 363 (1992).

    Google Scholar 

  8. A. W. Henkel, J. Lubke, and W. J. Betz, Proc. Natl. Acad. Sci. USA 93, 1918 (1996).

    Article  ADS  Google Scholar 

  9. A. L. Zefirov, P. N. Grigor’ev, A. M. Petrov, et al., Tsitologiya 45(12), 1163 (2003).

    Google Scholar 

  10. B. Ceccarelli, W. P. Hurlbut, and A. Mauro, J. Cell Biol. 57(2), 499 (1973).

    Article  Google Scholar 

  11. A. L. Zefirov, A. V. Zakharov, R. D. Mukhamedzyanov, and A. M. Petrov, Zh. Evolyuts. Biokhim. Fiziol. 44(6), 603 (2008).

    Google Scholar 

  12. J. I. Hubbard and D. F. Wilson, Cell. Mol. Life Sci. 26(11), 1234 (1970).

    Article  Google Scholar 

  13. A. M. Petrov and A. L. Zefirov, in Reception and Intracellular Signaling (Pushchino, 2005), pp. 178–181 [in Russian].

  14. I. A. Prior and M. J. Clague, Curr. Biol. 7(5), 353 (1997).

    Article  Google Scholar 

  15. M. A. Cousin and D. G. Nicholls, J. Neurochem. 69, 1927 (1997).

    Article  Google Scholar 

  16. J. E. Zengel and M. A. Sosa, J. Physiol. 477(2), 267 (1994).

    Google Scholar 

  17. W. Van der Kloot and J. Molgo, Physil. Rev. 74, 899 (1994).

    Article  Google Scholar 

  18. S. O. Rizzoli and W. J. Betz, Science 303, 2037 (2004).

    Article  ADS  Google Scholar 

  19. L. A. Gladkov, V. V. Kureichik, and V. M. Kureichik, Genetic Algorithms (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  20. D. A. Richards, C. Guatimosim, and W. J. Betz, Neuron. 27, 551 (2000).

    Article  Google Scholar 

  21. D. A. Richards, C. Guatimosim, S. O. Rizzoli, and W. J. Betz, Neuron 39, 529 (2003).

    Article  Google Scholar 

  22. R. Schneggenburger, T. Sakaba, and E. Neher, Trends Neurosci. 25, 206 (2002).

    Article  Google Scholar 

  23. T. C. Sudhof, Annu. Rev. Neuroscience 27, 509 (2004).

    Article  Google Scholar 

  24. S. O. Rizzoli and W. J. Betz, Nature rev. Neurosci. 6, 57 (2005).

    Article  Google Scholar 

  25. R. Schneggenburger, A. C. Meyer, and E. Neher, Neuron 23(2), 399 (1999).

    Article  Google Scholar 

  26. T. Sakaba and E. Neher, J. Neurosci. 21(2), 462 (2001).

    Google Scholar 

  27. K. Takei, O. Mundiql, L. Daniell, and P. De Camilli, J. Cell Biol. 133(6), 1237 (1996).

    Article  Google Scholar 

  28. S. O. Rizzoli, D. A. Richards, and W. J. Betz, J. Neurocytology 32, 539 (2003).

    Article  Google Scholar 

  29. F. Aristizabal and M. I. Glavinovic, Biol. Cybern. 90(1), 3 (2004).

    Article  MATH  Google Scholar 

  30. R. Renden and H. von Gersdorff, J. Neurophysiol. 98, 3349 (2004).

    Article  Google Scholar 

  31. E. L. Clayton and M. A. Cousin, J. Neurochem. 111(4), 901 (2009).

    Article  Google Scholar 

  32. J. F. Gennaro, W. L. Nastuk, and D. T. Rutherford, J. Physiol. (Lond.) 280, 237 (1978).

    Google Scholar 

  33. B. Granseth, B. Odermatt, S. J. Royle, and L. Lagnado, J. Physiol. 585, 681 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zakharov.

Additional information

Original Russian Text © A.V. Zakharov, A.M. Petrov, N.V. Kotov, A.L. Zefirov, 2012, published in Biofizika, 2012, Vol. 57, No. 4, pp. 670–682.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, A.V., Petrov, A.M., Kotov, N.V. et al. Experimental and modeling investigation of the mechanism of synaptic vesicles recycling. BIOPHYSICS 57, 508–518 (2012). https://doi.org/10.1134/S0006350912040203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350912040203

Keywords

Navigation