Skip to main content
Log in

Role of microRNA (miRNA) and Viroids in Lethal Diseases of Plants and Animals. Potential Contribution to Human Neurodegenerative Disorders

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Both plants and animals have adopted a common strategy of using ~18–25-nucleotide small non-coding RNAs (sncRNAs), known as microRNAs (miRNAs), to transmit DNA-based epigenetic information. miRNAs (i) shape the total transcriptional output of individual cells; (ii) regulate and fine-tune gene expression profiles of cell clusters, and (iii) modulate cell phenotype in response to environmental stimuli and stressors. These miRNAs, the smallest known carriers of geneencoded post-transcriptional regulatory information, not only regulate cellular function in healthy cells but also act as important mediators in the development of plant and animal diseases. Plants possess their own specific miRNAs; at least 32 plant species have been found to carry infectious sncRNAs called viroids, whose mechanisms of generation and functions are strikingly similar to those of miRNAs. This review highlights recent remarkable and sometimes controversial findings in miRNA signaling in plants and animals. Special attention is given to the intriguing possibility that dietary miRNAs and/or sncRNAs can function as mobile epigenetic and/or evolutionary linkers between different species and contribute to both intra- and interkingdom signaling. Wherever possible, emphasis has been placed on the relevance of these miRNAs to the development of human neurodegenerative diseases, such as Alzheimer’s disease. Based on the current available data, we suggest that such xeno-miRNAs may (i) contribute to the beneficial properties of medicinal plants, (ii) contribute to the negative properties of disease-causing or poisonous plants, and (iii) provide cross-species communication between kingdoms of living organisms involving multiple epigenetic and/or potentially pathogenic mechanisms associated with the onset and pathogenesis of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AMD:

age-related macular degeneration

CNS:

central nervous system

LPS:

lipopolysaccharide

miRNA:

microRNA

mRNA:

messenger RNA

nt:

nucleotide

sncRNA:

small non-coding RNA

3′-UTR:

3′-untranslated region

vsRNA:

viroid-specific sncRNA

References

  1. Moran, Y., Agron, M., Praher, D., and Technau, U. (2017) The evolutionary origin of plant and animal microRNAs, Nat. Ecol. Evol., 1,27.

    Article  PubMed  Google Scholar 

  2. Lukiw, W. J., Handley, P., Wong, L., and Crapper McLachlan, D. R. (1992) BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD), Neurochem. Res., 17, 591–597.

    Article  PubMed  CAS  Google Scholar 

  3. Axtell, M. J., Westholm, J. O., and Lai, E. C. (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals, Genome Biol., 12,221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pogue, A. I., Clement, C., Hill, J. M., and Lukiw, W. J. (2014) Evolution of microRNA (miRNA) structure and function in plants and animals: relevance to aging and disease, J. Aging Sci., 2,119.

    PubMed  PubMed Central  Google Scholar 

  5. Djami-Tchatchou, A. T., Sanan-Mishra, N., Ntushelo, K., and Dubery, I. A. (2017) Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection, Front. Plant Sci., 8,378.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao, Y., Cong, L., and Lukiw, W. J. (2018) Plant and animal microRNAs (miRNAs) and their potential for inter-kingdom communication, Cell. Mol. Neurobiol., 38, 133–140.

    Article  PubMed  CAS  Google Scholar 

  7. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002) MicroRNAs in plants, Genes Dev., 16, 1616–1626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Perge, P., Nagy, Z., Decmann, A., Igaz, I., and Igaz, P. (2017) Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis, RNA Biol., 14, 391–401.

    Article  PubMed  Google Scholar 

  9. Pirro, S., Minutolo, A., Galgani, A., Potesta, M., Colizzi, V., and Montesano, C. (2016) Bioinformatics prediction and experimental validation of microRNAs involved in cross-kingdom interaction, J. Comput. Biol., 23, 976–989.

    Article  PubMed  CAS  Google Scholar 

  10. Guo, H., Ingolia, N. T., Weissman, J. S., and Bartel, D. P. (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, 466, 835–840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liang, H., Huang, L., Cao, J., Zen, K., Chen, X., and Zhang, C. Y. (2012) Regulation of mammalian gene expression by exogenous microRNAs, Wiley Interdiscip. Rev. RNA, 3, 733–742.

    Article  PubMed  CAS  Google Scholar 

  12. Daros, J. A., Elena, S. F., and Flores, R. (2006) Viroids: an Ariadne’s thread into the RNA labyrinth, EMBO Rep., 7, 593–598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ding, B., and Wang, Y. (2009) Viroids: uniquely simple and tractable models to elucidate regulation of cell-to-cell trafficking of RNA, DNA Cell Biol., 28, 51–56.

    Article  PubMed  Google Scholar 

  14. Pogue, A. I., Hill, J. M., and Lukiw, W. J. (2014) MicroRNA (miRNA): sequence and stability, viroid-like properties, and disease association in the CNS, Brain Res., 1584, 73–79.

    Article  PubMed  CAS  Google Scholar 

  15. Arteaga-Vazquez, M., Caballero-Perez, J., and Vielle-Calzada, J. P. (2006) A family of microRNAs present in plants and animals, Plant Cell, 18, 3355–3369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhao, Y., and Lukiw, W. J. (2018) Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer’s disease, Front. Neurol., 9,145.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marshall, M. (2018) Timeline: the evolution of life, https://doi.org/www.newscientist.com/article/dn17453-timeline-the-evolution-of-life/(last accessed 11 June 2018).

    Google Scholar 

  18. Wang, D. Y., Kumar, S., and Hedges, S. B. (1999) Divergence time estimates for the earl history of animal phyla and the origin of plants, animals and fungi, Proc. Biol. Sci., 266, 163–171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dato, S., Rose, G., Crocco, P., Monti, D., Garagnani, P., Franceschi, C., and Passarino, G. (2017) The genetics of human longevity: an intricacy of genes, environment, culture and microbiome, Mech. Ageing Dev., 165, 147–155.

    Article  PubMed  CAS  Google Scholar 

  20. Vaucheret, H., and Chupeau, Y. (2012) Ingested plant miRNAs regulate gene expression in animals, Cell Res., 22, 3–5.

    Article  PubMed  CAS  Google Scholar 

  21. Wagner, A. E., Piegholdt, S., Ferraro, M., Pallauf, K., and Rimbach, G. (2015) Food derived microRNAs, Food Funct., 6, 714–718.

    Article  PubMed  CAS  Google Scholar 

  22. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs, Science, 294, 853–858.

    Article  PubMed  CAS  Google Scholar 

  23. Liang, H., Zen, K., Zhang, J., Zhang, C. Y., and Chen, X. (2013) New roles for microRNAs in cross-species communication, RNA Biol., 10, 367–370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions, Cell, 136, 215–233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Carthew, R. W., and Sontheimer, E. J. (2009) Origins and mechanisms of miRNAs and siRNAs, Cell, 136, 642–655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. UniProt Database; https://doi.org/www.uniprot.org/uniprot/Q9UPY3 (last accessed 11 June 2018).

  27. GeneCards microRNA-146a; Human Gene Database; microRNA-146a; Weitzmann Institute, Rehovot Israel; https://doi.org/www.genecards.org/cgi-bin/carddisp.pl?gene=MIR146A (last accessed 11 June 2018).

  28. National Center for Biological Information(NCBI); Bethesda MD, USA; Homo sapiens chromosome 5, GRCh38. p. 12. Primary Assembly. https://doi.org/www.ncbi.nlm.nih.gov/nuccore/NC_000005.10?strand=1&report=genbank&from=160485352&to=160485450 (last accessed 11 June 2018).

  29. Idda, M. L., Munk, R., Abdelmohsen, K., and Gorospe, M. (2018) Noncoding RNAs in Alzheimer’s disease, Wiley Interdiscip. Rev. RNA, 9, doi: 10.1002/wrna.1463.

  30. Miya Shaik, M., Tamargo, I. A., Abubakar, M. B., Kamal, M. A., Greig, N. H., and Gan, S. H. (2018) The role of microRNAs in Alzheimer’s disease and their therapeutic potentials, Genes (Basel), 9, E174.

    Article  CAS  Google Scholar 

  31. Lukiw, W. J. (2007) MicroRNA speciation in fetal, adult and Alzheimer’s disease hippocampus, Neuroreport, 18, 297–300.

    CAS  Google Scholar 

  32. Lukiw, W. J. (2012) Evolution and complexity of microRNA in the human brain, Front. Genet., 3, 166–175.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao, Y., Pogue, A. I., and Lukiw, W. J. (2015) MicroRNA (miRNA) signaling in the human CNS in sporadic Alzheimer’s disease-novel and unique pathological features, Int. J. Mol. Sci., 16, 30105–30116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hill, J. M., and Lukiw, W. J. (2014) Comparing miRNAs and viroids; highly conserved molecular mechanisms for the transmission of genetic information, Front. Cell. Neurosci., 8,45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hill, J. M., and Lukiw, W. J. (2016) MicroRNA (miRNA)-mediated pathogenetic signaling in Alzheimer’s disease (AD), Neurochem. Res., 41, 96–100.

    Article  PubMed  CAS  Google Scholar 

  36. Lukiw, W. J. (2012) Evolution and complexity of micro RNA in the human brain, Front. Genet., 3,166.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Taganov, K. D., Boldin, M. P., Chang, K.-J., and Baltimore, D. (2006) NF-kB-dependent induction of miRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses, Proc. Natl. Acad. Sci. USA, 103, 12481–12486.

    Article  PubMed  CAS  Google Scholar 

  38. Sethi, P., and Lukiw, W. J. (2009) Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex, Neurosci. Lett., 459, 100–104.

    Article  PubMed  CAS  Google Scholar 

  39. Mann, M., Mehta, A., Zhao, J. L., Lee, K., Marinov, G. K., Garcia-Flores, Y., and Baltimore, D. (2017) An NF-kB-microRNA regulatory network tunes macrophage inflammatory responses, Nat. Commun., 8,851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhao, Y., and Lukiw, W. J. (2018) Bacteroidetes neurotoxins and inflammatory neurodegeneration, Mol. Neurobiol., doi: 10.1007/s12035-018-1015-y.

    Google Scholar 

  41. Maudet, C., Mano, M., and Eulalio, A. (2014) MicroRNAs in the interaction between host and bacterial pathogens, FEBS Lett., 588, 4140–4147.

    Article  PubMed  CAS  Google Scholar 

  42. Lukiw, W. J., Cui, J. G., Yuan, L. Y., Bhattacharjee, P. S., Corkern, M., Clement, C., Kammerman, E. M., Ball, M. J., Zhao, Y., Sullivan, P. M., and Hill, J. M. (2010) Acyclovir or Aβ42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells, Neuroreport, 21, 922–927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jaber, V., Zhao, Y., and Lukiw, W. J. (2017) Alterations in micro RNA-messenger RNA (miRNA-mRNA) coupled signaling networks in sporadic Alzheimer’s disease (AD) hippocampal CA1, J. Alzheimers Dis. Parkinsonism, 7,312.

    PubMed  PubMed Central  Google Scholar 

  44. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans, Science, 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  45. Lee, R. C., and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans, Science, 294, 862–864.

    Article  PubMed  CAS  Google Scholar 

  46. Prasad, K. N. (2017) Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer’s disease, Mech. Ageing Dev., 162, 63–71.

    Article  PubMed  CAS  Google Scholar 

  47. Previdi, M. C., Carotenuto, P., Zito, D., Pandolfo, R., and Braconi, C. (2017) Noncoding RNAs as novel biomarkers in pancreatic cancer: what do we know? Future Oncol., 13, 443–453.

    Article  PubMed  CAS  Google Scholar 

  48. Alural, B., Genc, S., and Haggarty, S. J. (2017) Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: past, present, and future, Prog. Neuropsychopharmacol. Biol. Psychiatry, 73, 87–103.

    Article  PubMed  CAS  Google Scholar 

  49. Fabris, L., and Calin, G. A. (2016) Circulating free xeno-microRNAs-the new kids on the block, Mol. Oncol., 10, 503–508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ding, Y., Sun, X., and Shan, P. F. (2017) MicroRNAs and cardiovascular disease, Biomed Res. Int., doi: 10.1155/2017/4080364.

    Google Scholar 

  51. Adams, M. J., and Carstens, E. B. (2012) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses, Arch. Virol., 157, 1411–1422.

    Article  PubMed  CAS  Google Scholar 

  52. Diener, T. O. (2003) Discovering viroids-a personal perspective, Nat. Rev. Microbiol., 1, 75–80.

    Article  PubMed  CAS  Google Scholar 

  53. Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores R., and Di Serio, F. (2012) Viroids: how to infect a host and cause disease without encoding proteins, Biochimie, 94, 1474–1480.

    Article  PubMed  CAS  Google Scholar 

  54. Muller, S., and Appel, B. (2016) In vitro circularization of RNA, RNA Biol., 14, 1018–1027.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Adams, M. J., Lefkowitz, E. J., King, A. M. Q., Harrach, B., Harrison, R. L., Knowles, N. J., Kropinski, A. M., Krupovic, M., Kuhn, J. H., Mushegian, A. R., Nibert, M., Sabanadzovic, S., Sanfaçon, H., Siddell, S. G., Simmonds, P., Varsani, A., Zerbini, F. M., Gorbalenya, A. E., and Davison, A. J. (2017) Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses, Arch Virol., 162, 2505–2538.

    Article  PubMed  CAS  Google Scholar 

  56. Fox, A., and Mumford, R. A. (2017) Plant viruses and viroids in the United Kingdom: an analysis of first detections and novel discoveries from 1980 to 2014, Virus Res., 241, 10–18.

    Article  PubMed  CAS  Google Scholar 

  57. Hammann, C., and Steger, G. (2012) Viroid-specific small RNA in plant disease, RNA Biol., 9, 809–819.

    Article  PubMed  CAS  Google Scholar 

  58. Hill, J. M., Zhao, Y., Bhattacharjee, S., and Lukiw, W. J. (2014) miRNAs and viroids utilize common strategies in genetic signal transfer, Front. Mol. Neurosci., 7,10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhang, B., Pan, X., Cobb, G. P., and Anderson, T. A. (2006) Plant microRNA: a small regulatory molecule with big impact, Dev. Biol., 289, 3–16.

    Article  PubMed  CAS  Google Scholar 

  60. Chen, X., Liang, H., Zhang, J., Zen, K., and Zhang, C. Y. (2012) Secreted microRNAs: a new form of intercellular communication, Trends Cell Biol., 22, 125–132.

    Article  PubMed  CAS  Google Scholar 

  61. Chellappan, P., Vanitharani, R., and Fauquet, C. M. (2005) MicroRNA-binding viral protein interferes with Arabidopsis development, Proc. Natl. Acad. Sci. USA, 102, 10381–10386.

    Article  PubMed  CAS  Google Scholar 

  62. Budak, H., and Akpinar, B. A. (2015) Plant miRNAs: biogenesis, organization and origins, Funct. Integr. Genomics, 15, 523–531.

    Article  PubMed  CAS  Google Scholar 

  63. Millar, A. A., and Waterhouse, P. M. (2005) Plant and animal microRNAs: similarities and differences, Funct. Integr. Genomics, 5, 129–135.

    Article  PubMed  CAS  Google Scholar 

  64. Perkel, J. M. (2013) Assume nothing: the tale of circular RNA, Biotechniques, 55, 55–57.

    PubMed  CAS  Google Scholar 

  65. Lukiw, W. J., and Bazan, N. G. (1997) Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex, J. Neurosci. Res., 50, 937–945.

    PubMed  CAS  Google Scholar 

  66. Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., and Croce, C. M. (2002) Frequent deletions and down-regulation of micro-RNA genes miRNA-15 and miRNA-16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. USA, 99, 15524–15529.

    Article  PubMed  CAS  Google Scholar 

  67. Mirzaei, H., Fathullahzadeh, S., Khanmohammadi, R., Darijani, M., Momeni, F., Masoudifar, A., Goodarzi, M., Mardanshah, O., Stenvang, J., Jaafari, M. R., and Mirzaei, H. R. (2018) State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia, J. Cell. Physiol., 233, 888–900.

    Article  PubMed  CAS  Google Scholar 

  68. Millan, M. J. (2017) Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review, Prog. Neurobiol., 156, 1–68.

    Article  PubMed  CAS  Google Scholar 

  69. Recabarren, D., and Alarcon, M. (2017) Gene networks in neurodegenerative disorders, Life Sci., 183, 83–97.

    Article  PubMed  CAS  Google Scholar 

  70. Budak, H., and Zhang, B. (2017) MicroRNAs in model and complex organisms, Funct. Integr. Genomics, 17, 121–124.

    Article  PubMed  CAS  Google Scholar 

  71. Chen, X., Liang, H., Zhang, J., Zen, K., and Zhang, C. Y. (2012) Horizontal transfer of microRNAs: molecular mechanisms and clinical applications, Protein Cell, 3, 28–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Igaz, P., Nagy, Z., Vasarhelyi, B., Buzas, E., Falus, A., and Racz, K. (2012) Potential role for microRNAs in interindividual and inter-species communication, Orv. Hetil., 153, 1647–1650.

    Article  PubMed  Google Scholar 

  73. Luo, Y., Wang, P., Wang, X., Wang, Y., Mu, Z., Li, Q., Fu, Y., Xiao, J., Li, G., Ma, Y., Gu, Y., Jin, L., Ma, J., Tang, Q., Jiang, A., Li, X., and Li, M. (2017) Detection of dietetically absorbed maize-derived microRNAs in pigs, Sci. Rep., 7,645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. MirBASE release 21.0; microRNA database; University of Manchester, Manchester UK; https://doi.org/www.mirbase.org/cgi-bin/mirna_summary.pl?org=ath (last accessed 11 June 2018).

  75. Zhang, H., Li, Y., Liu, Y., Liu, H., Wang, H., Jin, W., Zhang, Y., Zhang, C., and Xu, D. (2016) Role of plant microRNA in cross-species regulatory networks of humans, BMC Syst. Biol., 10,60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Liang, H., Zhang, S., Fu, Z., Wang, Y., Wang, N., Liu, Y., Zhao, C., Wu, J., Hu, Y., Zhang, J., Chen, X., Zen, K., and Zhang, C. Y. (2015) Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma, J. Nutr. Biochem., 26, 505–512.

    Article  PubMed  CAS  Google Scholar 

  77. Walzer, K. A., and Chi, J. T. (2017) Trans-kingdom small RNA transfer during host-pathogen interactions: the case of P. falciparum and erythrocytes, RNA Biol., 14, 442–449.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hoy, A. M., and Buck, A. H. (2012) Extracellular small RNAs: what, where, why? Biochem. Soc. Trans., 40, 886–890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Makarova, J. A., Shkurnikov, M. U., Wicklein, D., Lange, T., Samatov, T. R., Turchinovich, A. A., and Tonevitsky, A. G. (2016) Intracellular and extracellular microRNA: an update on localization and biological role, Prog. Histochem. Cytochem., 51, 33–49.

    Article  PubMed  Google Scholar 

  80. Xie, W., Weng, A., and Melzig, M. F. (2016) MicroRNAs as new bioactive components in medicinal plants, Planta Med., 82, 1153–1162.

    Article  PubMed  CAS  Google Scholar 

  81. Turchinovich, A., Tonevitsky, A. G., and Burwinkel, B. (2016) Extracellular miRNA: a collision of two paradigms, Trends Biochem. Sci., 41, 883–892.

    Article  PubMed  CAS  Google Scholar 

  82. Rutter, B. D., and Innes, R. W. (2018) Extracellular vesicles as key mediators of plant-microbe interactions, Curr. Opin. Plant Biol., 44, 16–22.

    Article  PubMed  CAS  Google Scholar 

  83. Malloci, M., Perdomo, L., Veerasamy, M., Andriantsitohaina, R., Simard, G., and Martinez, M. C. (2018) Extracellular vesicles: mechanisms in human health and disease, Antioxid. Redox Signal., doi: 10.1089/ars.2017.7265.

    Google Scholar 

  84. Alexandrov, P. N., Dua, P., Hill, J. M., Bhattacharjee, S., Zhao, Y., and Lukiw, W. J. (2012) microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF), Int. J. Biochem. Mol. Biol., 3, 365–373.

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Andreeva, T. V., Lukiw, W. J., and Rogaev, E. I. (2017) Biological basis for amyloidogenesis in Alzheimer’s disease, Biochemistry (Moscow), 82, 122–139.

    Article  CAS  Google Scholar 

  86. MiRBase; microRNA database; University of Manchester, Manchester UK; https://doi.org/www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000477 (last accessed 11 June 2018).

  87. Genecards microRNA-146a; Weitzmann Institute, Rehovot Israel; https://doi.org/www.genecards.org/cgi-bin/carddisp.pl?gene=MIR146A (last accessed 11 June 2018).

  88. Li, Y. Y., Alexandrov, P. N., Pogue, A. I., Zhao, Y., Bhattacharjee, S., and Lukiw, W. J. (2012) MiRNA-155 upregulation and complement factor H deficits in Down’s syndrome, Neuroreport, 23, 168–173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Liang, H., Dong, Z., Liu, J. F., Chuang, W., Gao, L. Z., and Ren, Y. G. (2017) Targeting miRNA-155 suppresses proliferation and induces apoptosis of HL-60 cells by targeting Slug/PUMA signal, Histol. Histopathol., 32, 899–907.

    PubMed  Google Scholar 

  90. Chen, Y., Wang, G., Liu, Z., Wang, S., and Wang, Y. (2016) Glucocorticoids regulate the proliferation of T cells via miRNA-155 in septic shock, Exp. Ther. Med., 12, 3723–3728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Melnik, B. C., John, S. M., and Schmitz, G. (2014) Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J. Transl. Med., 12,43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Shriram, V., Kumar, V., Devarumath, R. M., Khare, T. S., and Wani, S. H. (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants, Front. Plant Sci., 7,817.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Van Roosbroeck, K., Fanini, F., Setoyama, T., Ivan, C., Rodriguez-Aguayo, C., Fuentes-Mattei, E., Xiao, L., Vannini, I., Redis, R. S., D’Abundo, L., Zhang, X., Nicoloso, M. S., Rossi, S., Gonzalez-Villasana, V., Rupaimoole, R., Ferracin, M., Morabito, F., Neri, A., Ruvolo, P. P., Ruvolo, V. R., Pecot, C. V., Amadori, D., Abruzzo, L., Calin, S., Wang, X., You, M. J., Ferrajoli, A., Orlowski, R., Plunkett, W., Lichtenberg, T. M., Davuluri, R. V., Berindan-Neagoe, I., Negrini, M., Wistuba, I. I., Kantarjian, H. M., Sood, A. K., Lopez-Berestein, G., Keating, M. J., Fabbri, M., and Calin, G. A. (2017) Combining anti-miRNA-155 with chemotherapy for the treatment of lung cancers, Clin. Cancer Res., 23, 2891–2904.

    Article  PubMed  CAS  Google Scholar 

  94. Wong, L. L., Wang, J., Liew, O. W., Richards, A. M., and Chen, Y. T. (2016) MicroRNA and heart failure, Int. J. Mol. Sci., 17,502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Yan, L., Hu, F., Yan, X., Wei, Y., Ma, W., Wang, Y., Lu, S., and Wang, Z. (2016) Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response, J. Mol. Med. (Berlin), 94, 1063–1079.

    Article  CAS  Google Scholar 

  96. Zhao, Y., Pogue, A. I., and Lukiw, W. J. (2015) MicroRNA (miRNA) signaling in the human CNS in sporadic Alzheimer’s disease (AD)-novel and unique pathological features, Int. J. Mol. Sci., 16, 30105–30116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Zhao, Y., Jaber, V., Percy, M. E., and Lukiw, W. J. (2017) A microRNA cluster (let-7c, miRNA-99a, miRNA-125b, miRNA-155 and miRNA-802) encoded at chr21q21.1-chr21q21.3 and the phenotypic diversity of Down’s syndrome (DS; trisomy 21), J. Nat. Sci., 3, e446.

    PubMed  PubMed Central  Google Scholar 

  98. Pogue, A. I., and Lukiw, W. J. (2018) Up-regulated proinflammatory microRNAs (miRNAs) in Alzheimer’s disease (AD) and age-related macular degeneration (AMD), Cell. Mol. Neurobiol., 38, 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  99. Barker, K. R., Lu, Z., Kim, H., Zheng, Y., Chen, J., Conroy, A. L., Hawkes, M., Cheng, H. S., Njock, M. S., Fish, J. E., Harlan, J. M., Lopez, J. A., Liles, W. C., and Kain, K. C. (2017) MiRNA-155 modifies inflammation, endothelial activation and blood-brain barrier dysfunction in cerebral malaria, Mol. Med., 2,23.

    Google Scholar 

  100. MiRBase; microRNA database; University of Manchester, Manchester, UK; https://doi.org/www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000477 (last accessed 11 June 2018).

  101. Genecards microRNA-155; Weitzmann Institute, Rehovot Israel; https://doi.org/www.genecards.org/cgi-bin/carddisp.pl?gene=MIR155 (last accessed 11 June 2018).

  102. Banerjee, N., Talcott, S., Safe, S., and Mertens-Talcott, S. U. (2012) Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation, Breast Cancer Res. Treat., 136, 21–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. De Figueiredo, S. M., de Freitas, M. C. D., de Oliveira, D. T., de Miranda, M. B., Vieira-Filho, S. A., and Caligiorne, R. B. (2017) Biological activities of red propolis: a review, Recent Pat. Endocr. Metab. Immune Drug Discov., 11, 3–12; doi: 10.2174/1872214812666180223120316.

    PubMed  Google Scholar 

  104. Conti, B. J., Santiago, K. B., Cardoso, E. O., Freire, P. P., Carvalho, R. F., Golim, M. A., and Sforcin, J. M. (2016) Propolis modulates miRNAs involved in TLR-4 pathway, NF-kB activation, cytokine production and in the bactericidal activity of human dendritic cells, J. Pharm. Pharmacol., 68, 1604–1612.

    Article  PubMed  CAS  Google Scholar 

  105. Alexandrov, P., Cui, J. G., Zhao, Y., and Lukiw, W. J. (2005) 24S-hydroxycholesterol induces inflammatory gene expression in primary human neural cells, Neuroreport, 16, 909–913.

    Article  PubMed  CAS  Google Scholar 

  106. Bagyinszky, E., Giau, V. V., Shim, K., Suk, K., An, S. S. A., and Kim, S. (2017) Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis, J. Neurol. Sci., 376, 242–254.

    Article  PubMed  CAS  Google Scholar 

  107. Hill, J. M., Pogue, A. I., and Lukiw, W. J. (2015) Pathogenic microRNAs common to brain and retinal degeneration; recent observations in Alzheimer’s disease and age-related macular degeneration, Front. Neurol., 6,232.

    PubMed  PubMed Central  Google Scholar 

  108. MiRBase; microRNA database; University of Manchester; https://doi.org/www.mirbase.org/cgi-bin/mirna_summary.pl?fam=MIPF0000081 (last accessed 11 June 2018).

  109. Hu, H., Rashotte, A. M., Singh, N. K., Weaver, D. B., Goertzen, L. R., Singh, S. R., and Locy, R. D. (2015) The complexity of posttranscriptional small RNA regulatory networks revealed by in silico analysis of Gossypium arboreum L. leaf, flower and boll small regulatory RNAs, PLoS One, 10, e0127468.

    PubMed  Google Scholar 

  110. Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., Yin, Y., Wang, C., Zhang, T., Zhu, D., Zhang, D., Xu, J., Chen, Q., Ba, Y., Liu, J., Wang, Q., Chen, J., Wang, J., Wang, M., Zhang, Q., Zhang, J., Zen, K., and Zhang, C. Y. (2012) Exogenous plant miRNA-168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by miRNA, Cell Res., 22, 107–126.

    Article  PubMed  CAS  Google Scholar 

  111. New Scientist-Timeline: The evolution of life; https://doi.org/www.newscientist.com/article/dn17453-timeline-the-evolution-of-life/ (last accessed 11 June 2018).

  112. Rosenberg, E., and Zilber-Rosenberg, I. (2016) Microbes drive evolution of animals and plants: the hologenome concept, MBio, 7, e01395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lukiw, W. J. (2004) Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling, Neurochem. Res., 29, 1287–1297.

    Article  PubMed  CAS  Google Scholar 

  114. Cui, J. G., Zhao, Y., and Lukiw, W. J. (2005) Isolation of high spectral quality RNA using run-on gene transcription; application to gene expression profiling of human brain, Cell. Mol. Neurobiol., 25, 789–794.

    Article  PubMed  CAS  Google Scholar 

  115. Clement, C., Hill, J. M., Dua, P., Culicchia, F., and Lukiw, W. J. (2016) Analysis of RNA from Alzheimer’s disease post-mortem brain tissues, Mol. Neurobiol., 53, 1322–1328.

    Article  PubMed  CAS  Google Scholar 

  116. Barbash, S., and Sakmar, T. P. (2017) Length-dependent gene mis-expression is associated with Alzheimer’s disease progression, Sci. Rep., 7,190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kang, W., Bang-Berthelsen, C. H., Holm, A., Houben, A. J., Muller, A. H., Thymann, T., Pociot, F., Estivill, X., and Friedlander, M. R. (2017) Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts, RNA, 23, 433–445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Lukasik, A., and Zielenkiewicz, P. (2016) Plant microRNAs-novel players in natural medicine? Int. J. Mol. Sci., 18, E9.

    Article  PubMed  CAS  Google Scholar 

  119. Kwakye, G. F., Jimenez, J., Jimenez, J. A., and Aschner, M. (2018) Atropa belladonna neurotoxicity: implications to neurological disorders, Food Chem. Toxicol., 116, 346–353.

    Article  PubMed  CAS  Google Scholar 

  120. University of California Phylogeny Wing: The Phylogeny of Life; https://doi.org/www.ucmp.berkeley.edu/alllife/threedomains.html (last accessed 11 June 2018).

  121. Astrobiology at NASA-Life in the Universe; The three domains of life; https://doi.org/astrobiology.nasa.gov/news/the-three-domains-of-life/(last accessed 11 June 2018).

  122. Sciencing: Characteristics of the six kingdoms of organisms; https://doi.rog/sciencing.com/characteristics-six-kingdoms-organisms-8242194.html) (last accessed 11 June 2018).

  123. Flores, R., Navarro, B., Kovalskaya, N., Hammond, R. W., and Di Serio, F. (2017) Engineering resistance against viroids, Curr. Opin. Virol., 26, 1–7.

    Article  PubMed  CAS  Google Scholar 

  124. Lukasik, A., and Zielenkiewicz, P. (2014) In silico identification of plant miRNAs in mammalian breast milk exo-somes-a small step forward? PLoS One, 9, e99963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yu, Y., Jia, T., and Chen, X. (2017) The “how” and “where” of plant microRNAs, New Phytol., 216, 1002–1017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Chen, X., Xie, D., Zhao, Q., and You, Z. H. (2017) MicroRNAs and complex diseases: from experimental results to computational models, Brief. Bioinform., doi: 10.1093/bib/bbx130.

    Google Scholar 

  127. Moran, Y., Agron, M., Praher, D., and Technau, U. (2017) The evolutionary origin of plant and animal microRNAs, Nat. Ecol. Evol., 1,27.

    Article  PubMed  Google Scholar 

  128. Zhou, G., Zhou, Y., and Chen, X. (2017) New insight into inter-kingdom communication: horizontal transfer of mobile small RNAs, Front. Microbiol., 8,768.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Singh, N. K. (2017) miRNAs target databases: developmental methods and target identification techniques with functional annotations, Cell. Mol. Life Sci., 74, 2239–2261.

    Article  PubMed  CAS  Google Scholar 

  130. Bhat, S. S., Jarmolowski, A., and Szweykowska-Kulinska, Z. (2016) MicroRNA biogenesis: epigenetic modifications as another layer of complexity in the microRNA expression regulation, Acta Biochim. Pol., 63, 717–723.

    Article  PubMed  CAS  Google Scholar 

  131. Mal, C., Aftabuddin, M., and Kundu, S. (2018) IIKmTA: inter- and intra-kingdom miRNA-target analyzer, Interdiscip. Sci., doi: 10.1007/s12539-018-0291-6.

    Google Scholar 

  132. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyma, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O’Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., and Tewari, M. (2008) Circulating microRNAs as stable blood-based markers for cancer detection, Proc. Natl. Acad. Sci. USA, 105, 10513–10518.

    Article  PubMed  Google Scholar 

  133. Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma, Proc. Natl. Acad. Sci. USA, 108, 5003–5008.

    Article  PubMed  Google Scholar 

  134. Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011) Characterization of extracellular circulating microRNA, Nucleic Acids Res., 39, 7223–7233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Lukiw.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 9, pp. 1283–1298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, L., Zhao, Y., Pogue, A.I. et al. Role of microRNA (miRNA) and Viroids in Lethal Diseases of Plants and Animals. Potential Contribution to Human Neurodegenerative Disorders. Biochemistry Moscow 83, 1018–1029 (2018). https://doi.org/10.1134/S0006297918090031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918090031

Keywords

Navigation