Skip to main content
Log in

Influence of a Single Point Mutation in the Constant Domain of the Bence-Jones Protein BIF on Its Aggregation Properties

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Multiple myeloma nephropathy occurs due to the aggregate formation by monoclonal immunoglobulin light chains (Bence-Jones proteins) in kidneys of patients with multiple myeloma. The mechanism of amyloid deposit formation is still unclear. Earlier, the key role in the fibril formation has been assigned to the variable domains that acquired amyloidogenic properties as a result of somatic mutations. However, fibril formation by the Bence-Jones protein BIF was found to be the function of its constant domain. The substitution of Ser177 by Asn in the constant domain of the BIF protein is most likely an inherited than a somatic mutation. To study the role of this mutation in amyloidogenesis, the recombinant Bence-Jones protein BIF and its mutant with the N177S substitution typical for the known immunoglobulin Cκ allotypes Km1, Km1,2, and Km3 were isolated. The morphology of aggregates formed by the recombinant proteins under conditions similar to those occurring during the protein transport in bloodstream and its filtration into the renal glomerulus, in the distal tubules, and in the proximal renal tubules was analyzed by atomic force microscopy. The nature of the aggregates formed by BIF and its N177S mutant during incubation for 14 days at 37°C strongly differed and depended on both pH and the presence of a reducing agent. BIF formed fibrils at pH 7.2, 6.5, and 10.1, while the N177S mutant formed fibrils only at alkaline pH 10.1. The refolding of both proteins in the presence of 5 mM dithiothreitol resulted in the formation of branched structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscopy

BJ myeloma:

Bence-Jones myeloma

BJPs:

Bence-Jones proteins (Ig light chains)

CL :

constant domain of Ig light chain

MM :

multiple myeloma

VL :

variable domain of Ig light chain.

References

  1. Korbet, S. M., and Schwartz, M. M. (2006) Multiple myeloma, J. Am. Soc. Nephrol., 17, 2533–2545.

    Article  PubMed  Google Scholar 

  2. Pozzi, C., and Locatelli, F. (2002) Kidney and liver involvement in monoclonal light chain disorders, Semin. Nephrol., 22, 319–330.

    CAS  PubMed  Google Scholar 

  3. Solomon, A., Weiss, D. T., Murphy, C. L., Hrncic, R., Wall, J. S., and Schell, M. (1998) Light chain-associated amyloid deposits comprised of a novel kappa constant domain, Proc. Natl. Acad. Sci. USA, 95, 9547–9551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mukherjee, S., Pondaven, S. P., and Jaroniec, C. P. (2011) Conformational flexibility of a human immunoglobulin light chain variable domain by relaxation dispersion nuclear magnetic resonance spectroscopy: implications for protein misfolding and amyloid assembly, Biochemistry, 50, 5845–5857.

    Article  CAS  PubMed  Google Scholar 

  5. Wilkins-Stevens, P., Raffen, R., Hanson, D. K., Deng, Y. L., Berrios-Hammond, M., Westholm, F. A., Murphy, C., Eulitz, M., Wetzel, R., Solomon, A., Schiffer, M., and Stevens, F. J. (1995) Recombinant immunoglobulin variable domains generated from synthetic genes provide a system for in vitro characterization of light-chain amyloid proteins, Protein Sci., 4, 421–432.

    Article  Google Scholar 

  6. Maniatis, T., Fritisch, E. F., and Sambrok, J. (1982) in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, N. Y.

    Google Scholar 

  7. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  8. Dubnovitsky, A. P., Kravchuk, Z. I., Chumanevich, A. A., Cozzi, A., Arosio, P., and Martsev, S. P. (2000) Expression, refolding, and ferritin-binding activity of the isolated VL-domain of monoclonal antibody F11, Biochemistry (Moscow), 65, 1011–1018.

    CAS  Google Scholar 

  9. LeVine, H., 3rd. (1993) Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution, Protein Sci., 2, 404–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klunk, W. E., Jacob, R. F., and Mason, R. P. (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo Red-Abeta (CR-abeta) spectrophotometric assay, Anal. Biochem., 266, 66–76.

    Article  CAS  PubMed  Google Scholar 

  11. Kushnirov, V. V., Alexandrov, I. M., Mitkevich, O. V., Shkundina, I. S., and Ter-Avanesyan, M. D. (2006) Purification and analysis of prion and amyloid aggregates, Methods, 39, 50–55.

    Article  CAS  PubMed  Google Scholar 

  12. Vishnyakov, I. E., Borchsenius, S. N., Basovskii, Y. I., Levitskii, S. A., Lazarev, V. N., Snigirevskaya, E. S., and Komissarchik, Y. Y. (2009) Localization of the division protein FTSZ in micoplasma cells, Cell Tissue Biol., 3, 254–263.

    Article  Google Scholar 

  13. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling, Biophys. J., 78, 1606–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Timchenko, A., Timchenko, M., Shinjo, M., and Kihara, H. (2015) SAXS study of N177S mutant of Bence-Jones protein BIF, Photon Factory Activity Report, 2014, 32, 366.

    Google Scholar 

  15. Pertinhez, T. A., Bouchard, M., Smith, R. A., Dobson, C. M., and Smith, L. J. (2002) Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS, FEBS Lett., 529, 193–197.

    Article  CAS  PubMed  Google Scholar 

  16. Stevens, F. J., Westholm, F. A., Solomon, A., and Schiffer, M. (1980) Self-association of human immunoglobulin kappa I light chains: role of the third hypervariable region, Proc. Natl. Acad. Sci. USA, 77, 1144–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Myatt, E. A., Westholm, F. A., Weiss, D. T., Solomon, A., Schiffer, M., and Stevens, F. J. (1994) Pathogenic potential of human monoclonal immunoglobulin light chains: relationship of in vitro aggregation to in vivo organ deposition, Proc. Natl. Acad. Sci. USA, 91, 3034–3038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bliznyukov, O. P., Kozmin, L. D., Vysotskaya, L. L., Golenkov, A. K., Tishchenko, V. M., Samoylovich, M. P., and Klimovich, V. B. (2005) Human immunoglobulin light chains λ form amyloid fibrils and granular aggregates in solution, Biochemistry (Moscow), 70, 458–466.

    Article  CAS  Google Scholar 

  19. Zhu, M., Souillac, P. O., Ionescu-Zanetti, C., Carter, S. A., and Fink, A. L. (2002) Surface-catalyzed amyloid fibril formation, J. Biol. Chem., 277, 50914–50922.

    Article  CAS  PubMed  Google Scholar 

  20. Davis, D. P., Gallo, G., Vogen, S. M., Dul, J. L., Sciarretta, K. L., Kumar, A., Raffen, R., Stevens, F. J., and Argon, Y. (2001) Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain, J. Mol. Biol., 313, 1021–1034.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, Y., Wall, J. S., Meyer, J., Murphy, C., Randolph, T. W., Manning, M. C., Solomon, A., and Carpenter, J. F. (2000) Thermodynamic modulation of light chain amyloid fibril formation, J. Biol. Chem., 275, 1570–1574.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, Y., Li, H., Zhu, L., Zhou, J. M., and Perrett, S. (2004) Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains, J. Biol. Chem., 279, 3361–3369.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Timchenko.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-201, November 6, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timchenko, M.A., Timchenko, A.A. Influence of a Single Point Mutation in the Constant Domain of the Bence-Jones Protein BIF on Its Aggregation Properties. Biochemistry Moscow 83, 107–118 (2018). https://doi.org/10.1134/S0006297918020037

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918020037

Keywords

Navigation