Skip to main content
Log in

Investigation of stability of photosynthetic reaction center and quantum dot hybrid films

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The efficiency of interaction (efficiency of energy transfer) between various quantum dots (QDs) and photosynthetic reaction centers (RCs) from the purple bacterium Rhodobacter sphaeroides and conditions of long-term stability of functioning of such hybrid complexes in film preparations were investigated. It was found that dry films containing RCs and QDs and maintained at atmospheric humidity are capable to keep their functional activity for at least some months as judging by results of measurement of their spectral characteristics, efficiency of energy transfer from QDs to RCs, and RC electron-transport activity. Addition of trehalose to the films giving them still greater stability is especially expressed for films maintained at low humidity. These stable hybrid film structures are promising for further biotechnological studies for developing new phototransformation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BChl:

bacteriochlorophyll

BPheo:

bacteriopheophytin

LDAO:

lauryldimethylamine oxide

P:

photoactive BChl dimer

P+ :

oxidized BChl dimer

QA :

primary quinone acceptor

QB :

secondary quinone

QD:

quantum dots

Qx :

absorption band of P with maximum about 600 nm

RC:

reaction center

τ:

characteristic fluorescence time

References

  1. Leatherdale, C. A., Woo, W.-K., Mikulec, F. V., and Bawendi, M. G. (2002) On the absorption cross section of CdSe nanocrystal quantum dots, J. Phys. Chem. B, 106, 7619–7622.

    Article  CAS  Google Scholar 

  2. Oleynikov, V. A., Sukhanova, A. V., and Nabiev, I. R. (2007) Fluorescent semiconductor nanocrystals for biology and medicine, Russ. Nanotechnol., 2, 160–173.

    Google Scholar 

  3. Nabiev, I., Rakovich, A., Sukhanova, A., Lukashev, E., Zagidullin, V., Pachenko, V., Rakovich, Y., Donegan, J. F., Rubin, A. B., and Govorov, A. O. (2010) Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers, Angew. Chem. Int. Ed. Engl., 49, 7217–7221.

    Article  PubMed  Google Scholar 

  4. Zagidullin, V. E., Lukashev, E. P., Knox, P. P., Seifullina, N. K., Sokolova, O. S., Paschenko, V. Z., Pechnikova, E. V., and Lokstein, H. (2014) Properties of hybrid complexes composed of photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides and quantum dots in lecithin liposomes, Biochemistry (Moscow), 79, 1183–1191.

    Article  CAS  Google Scholar 

  5. Zakharova, N. I., and Churbanova, I. Yu. (2000) Methods of isolation of reaction center preparations from photosynthetic purple bacteria, Biochemistry (Moscow), 65, 149–159.

    CAS  Google Scholar 

  6. Palazzo, G., Mallardi, A., Hochkoeppler, A., Cordone, L., and Venturoli, G. (2002) Electron transfer kinetics in photosynthetic reaction centers embedded in trehalose glasses: trapping of conformational substates at room temperature, Biophys. J., 82, 558–568.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Winston, P., and Bates, D. (1960) Saturated solutions for the control of humidity in biological research, Ecology, 41, 232–237.

    Article  Google Scholar 

  8. Borissevitch, I. E. (1999) More about the inner filter effect: corrections of Stern–Volmer fluorescence quenching constants are necessary at very low optical absorption of the quencher, J. Luminesc., 81, 219–224.

    Article  CAS  Google Scholar 

  9. Gingras, G. (1978) The Photosynthetic Bacteria (Clayton, R. K., and Sistrom, W. R., eds.) Plenum Press, N. Y., pp. 119–131.

  10. Shaitan, K. V., Uporov, I. V., and Rubin, A. B. (1985) The theory of ligand migration in biomacromolecules, Mol. Biol. (Moscow), 19, 616–623.

    Google Scholar 

  11. Knox, P. P., Bystryak, I. M., Kotelnikov, A. I., Shaitan, K. V., Kononenko, A. A., Zakharova, N. I., Likhtenshtein, G. I., and Rubin, A. B. (1989) Electron transfer in the system of quinone acceptors and internal dynamics of the photosynthetic apparatus of purple bacteria in preparations with different content of glycerol or sugars, News USSR Acad. Sci., 5, 651–659.

    Google Scholar 

  12. Knox, P. P., Kononenko, A. A., and Rubin, A. B. (1979) Functional activity of photosynthetic reaction centers from Rhodopseudomonas sphaeroides at fixed hydration of samples, Bioorg. Khim., 5, 879–885.

    CAS  Google Scholar 

  13. Moller, J. V., and Le Maire, V. (1993) Detergent binding as a measure of hydrophobic surface area of integral membrane proteins, J. Biol. Chem., 268, 18659–18672.

    PubMed  CAS  Google Scholar 

  14. Feher, G., and Okamura, M. Y. (1978) The Photosynthetic Bacteria (Clayton, R. K., and Sistrom, W. R., eds.) Plenum Press, N. Y., pp. 349–386.

  15. Knox, P. P., Gorokhov, V. V., and Paschenko, V. Z. (2014) Contemporary Problems of Photosynthesis (Allakhverdiev, S. I., Rubin, A. B., and Shuvalov, V. A., eds.) Vol. 1, nstitute of Computer Science, Izhevsk-Moscow, pp. 225–268.

  16. McMahon, B. H., Muller, J. D., Wright, C. A., and Nienhaus, G. U. (1998) Electron transfer and protein dynamics in the photosynthetic reaction center, Biophys. J., 74, 2567–2587.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Okamura, M. Y., Paddock, M. L., Graige, M. S., and Feher, G. (2000) Proton and electron transfer in bacterial reaction centers, Biochim. Biophys. Acta, 1458, 148–163.

    Article  PubMed  CAS  Google Scholar 

  18. Ambrosone, L., Mallardi, A., Palazzo, G., and Venturoli, G. (2002) Effect of heterogeneity in the distribution of ligands and proteins among disconnected particles: the binding of ubiquinone to the bacterial reaction center, Phys. Chem. Chem. Phys., 4, 3071–3077.

    Article  CAS  Google Scholar 

  19. Carpenter, J. F., and Crowe, J. H. (1989) An infrared spectroscopic study of the interaction of carbohydrates with dried proteins, Biochemistry, 28, 3916–3922.

    Article  PubMed  CAS  Google Scholar 

  20. Belton, P. S., and Gil, A. M. (1994) IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme, Biopolymers, 34, 957–961.

    Article  PubMed  CAS  Google Scholar 

  21. Subrata, P., and Sandip, P. (2015) Molecular insights into the role of aqueous trehalose solution on temperature-induced protein denaturation, J. Phys. Chem. B, 119, 1598–1610.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Knox.

Additional information

Original Russian Text © E. P. Lukashev, P. P. Knox, I. P. Oleinikov, N. Kh. Seifullina, N. P. Grishanova, 2016, published in Biokhimiya, 2016, Vol. 81, No. 1, pp. 135-142.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukashev, E.P., Knox, P.P., Oleinikov, I.P. et al. Investigation of stability of photosynthetic reaction center and quantum dot hybrid films. Biochemistry Moscow 81, 58–63 (2016). https://doi.org/10.1134/S0006297916010065

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916010065

Keywords

Navigation