Skip to main content
Log in

Influence of fucoidans and their derivatives on antitumor and phagocytic activity of human blood leucocytes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The immunotropic activity of structurally different fucoidans and their derivatives towards isolated immune blood cells, effectors of innate immune system, was studied. The most potent effect was observed for high molecular weight fucoidan CF from the alga Chordaria flagelliformis, whose backbone is built of (1→3)-linked units of α-L-fucopyranose, and branches included residues of α-D-glucuronic acid and α-L-fucofuranose. This compound at the concentration of 0.05 mg/ml potentiated phagocytosis of Saccharomyces cerevisiae and Lactobacillus acidophilus by neutrophils, increasing relative quantity of phagocytes as well as their effectiveness. Along with this, 14% increase in the concentration of membrane-bound integrin CD11c molecules was observed. The systemic effect of CF at the dose of 0.01 mg/mouse i.p. led to potentiation of cytotoxic activity of spleen mononuclear leucocytes towards melanoma cells of line B16 by 1.9-fold and towards chronic myelogenous leukemia cells of line K-562 by 1.7-fold. These results indicate that fucoidan CF can stimulate anti-infective and antitumor activity of effectors of the innate immune system via CD11c integrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CF:

high molecular weight fucoidan from alga Chordaria flagelliformis

DMSO:

dimethyl sulfoxide

EC:

effector cells

IC:

index of cytotoxicity

MFI:

mean fluorescence intensity

ML:

mononuclear leukocytes

NBT:

nitroblue tetrazolium

NK:

natural killer cells

OS:

synthetic fully sulfated octasaccharide

PI:

phagocytic index

PN:

phagocytic number

PPdX:

dexylosylated low molecular weight fucoidan from alga Punctaria plantaginea

SL:

high molecular weight fucoidan from alga Saccharina latissima

TC:

target cells

References

  1. Fitton, J. H. (2011) Therapies from fucoidan; multifunctional marine polymers, Mar. Drugs, 9, 1731–1760.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Pomin, V. H. (2012) Fucanomics and galactanomics: current status in drug discovery, mechanisms of action and role of the well-defined structures, Biochim. Biopys. Acta, 1820, 1971–1979.

    Article  CAS  Google Scholar 

  3. Jiao, G., Yu, G., Zhang, J., and Ewart, S. (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae, Mar. Drugs, 9, 196–223.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ale, M. T, Mikkelsen, J. D., and Meyer, A. S. (2011) Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds, Mar. Drugs, 9, 2106–2130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ananikov, V. P., Khokhlova, E. A., Egorov, M. P., Sakharov, A. M., Zlotin, S. G., Kucherov, A. V., Kustov, L. M., Gening, M. L., and Nifantiev, N. E. (2015) Organic and hybrid molecular systems, Mendeleev Commun., 25, 75–82.

    Article  CAS  Google Scholar 

  6. Jin, J., and Yu, Q. (2015) Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils, Int. J. Biol. Macromol., 73, 65–71.

    Article  CAS  PubMed  Google Scholar 

  7. Makarenkova, I. D., Logunov, D. Y., Tukhvatulin, A. I., Semenova, I. B., Zvyagintseva, T N., Gorbach, V. I., Ermakova, S. P., and Besednova, N. N. (2012) Sulfated polysaccharides of brown seaweeds are ligands of toll-like receptors, Biochem. Mosc. Suppl. Ser. B. Biomed. Chem., 6, 75–80.

    Article  Google Scholar 

  8. Jin, J-O., Zhang, W., Du, J-Y, Wong, K-W., Oda, T, and Yu, Q. (2014) Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T-cell immune responses, PLoS One, 9, e99396.

    Article  Google Scholar 

  9. Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D’Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. A., Usov, A. I., Ustuzhanina, N. E., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., and Nifantiev, N. E. (2007) A comparative study of the antiinflammatory, anticoagulant, antiangiogenic and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology, 17, 541–552.

    Article  CAS  PubMed  Google Scholar 

  10. Ustyuzhanina, N. E., Ushakova, N. A., Zyuzina, K. A., Bilan, M. I., Elizarova, A. L., Somonova, O. V., Madzhuga, A. V., Krylov, V. B., Preobrazhenskaya, M. E., Usov, A. I., Kiselevskiy, M. V., and Nifantiev, N. E. (2013) Influence of fucoidans on hemostatic system, Mar. Drugs, 11, 24442458.

    Article  Google Scholar 

  11. Ustyuzhanina, N. E., Bilan, M. I., Ushakova, N. A., Usov, A. I., Kiselevskiy, M. V., and Nifantiev, N. E. (2014) Fucoidans: pro- or antiangiogenic agents, Glycobiology, 24, 1265–1274.

    Article  PubMed  Google Scholar 

  12. Ustyuzhanina, N. E., Ushakova, N. A., Preobrazhenskaya, M. E., Bilan, M. I., Tsvetkova, E. A., Krylov, V. B., Anisimova, N. A., Kiselevskiy, M. V., Krukovskaya, N. V., Li, C., Yu, G., Saran, S., Saxena, R. K., Usov, A. I., and Nifantiev, N. E. (2014) Fucoidans as a platform for new anticoagulant drugs discovery, Pure Appl. Chem., 86, 13651375.

    Article  Google Scholar 

  13. Bilan, M. I., Grachev, A. A., Shashkov, A. S., Kelly, M., Sanderson, C. J., Nifantiev, N. E., and Usov, A. I. (2010) Further studies on the composition and structure of a fucoidan preparation from the brown alga Saccharina latissima, Carbohydr. Res., 345, 2038–2047.

    Article  CAS  PubMed  Google Scholar 

  14. Bilan, M. I., Vinogradova, E. V., Tsvetkova, E. A., Grachev, A. A., Shashkov, A. S., Nifantiev, N. E., and Usov, A. I. (2008) A sulfated glucuronofucan containing both fucofuranose and fucopyranose residues from the brown alga Chordaria flagelliformis, Carbohydr. Res., 343, 2605–2612.

    Article  CAS  PubMed  Google Scholar 

  15. Bilan, M. I., Shashkov, A. S., and Usov, A. I. (2014) Structure of a sulfated xylofucan from the brown alga Punctaria plantaginea, Carbohydr. Res., 393, 1–8.

    Article  CAS  PubMed  Google Scholar 

  16. Krylov, V. B., Kaskova, Z. M., Vinnitskiy, D. Z., Ustyuzhanina, N. E., Grachev, A. A., Chizhov, A. O., and Nifantiev, N. E. (2011) Acid-promoted synthesis of per-Osulfated fucooligosaccharides related to fucoidan fragments, Carbohydr. Res., 346, 540–550.

    Article  CAS  PubMed  Google Scholar 

  17. Anisimova, N. Yu., Lebedinskaya, O. V., Karpenko, A. Yu., Kopylov, A. N., and Kiselevskiy, M. V. (2012) Estimation of activity ofblood neutrophils using bacteria and unicellular yeasts as phagocytosis objects, Vest. Ural. Med. Acad. Sci., 41, 12–13.

    Google Scholar 

  18. Karpishchenko, A. I. (ed.) (2002) Medical Laboratory Technologies. Guidebook [in Russian], Intermedika, St. Petersburg.

  19. Shpakova, A. P., Pavlova, K. S., and Bulycheva, T I. (2000) MTT-colorimetric method for detection the cytotoxic activity of human natural killer cells, Klin. Lab. Diagn., 2, 20–23.

    PubMed  Google Scholar 

  20. Mann, B. S., and Chung, K. F. (2006) Blood neutrophil activation markers in severe asthma: lack of inhibition by prednisolone therapy, Resp. Res., 7, 59.

    Article  Google Scholar 

  21. Sadhu, C., Ting, H. J., Lipsky, B., Hensley, K., Garcia-Martinez, L. F., Simon, S. I., and Staunton, D. E. (2007) CD11c/CD18: novel ligands and a role in delayed-type hypersensitivity, J. Leukoc. Biol., 81, 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  22. Anisimova, N. Yu., Pluzhnikova, N. A., Gromova, E. G., Kuznetsova, L. S., Tsvetkov, D. S., and Kiselevskiy, M. V. (2011) Receptor of apoptosis and adhesion molecules of leukocytes- promising sepsis markers in cancer patients, Russ. J. Immunol., 14, 262–265.

    Google Scholar 

  23. Anisimova, N. Yu., and Blokhin, N. N. (2014) Immunological Pathogenesis of Sepsis and Use of Hemosorption for Treatment of Cancer Patients with Sepsis, Nova Science Publishers Inc., N. Y.

  24. Kumar, V., and Sharma, A. (2010) Neutrophils: Cinderella of innate immune system, Int. Immunopharmacol., 10, 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  25. Thomas, S., and Balasubramanian, K. A. (2004) Role of intestine in postsurgical complications: involvement of free radicals, Free Radic. Biol. Med., 36, 745–756.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Yu. Anisimova or N. E. Ustyuzhanina.

Additional information

To whom correspondence should be addressed.

Original Russian Text © N. Yu. Anisimova, N. E. Ustyuzhanina, F. V. Donenko, M. I. Bilan, N. A. Ushakova, A. I. Usov, N. E. Nifantiev, M. V. Kiselevskiy, 2015, published in Biokhimiya, 2015, Vol. 80, No. 7, pp. 1099-1108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimova, N.Y., Ustyuzhanina, N.E., Donenko, F.V. et al. Influence of fucoidans and their derivatives on antitumor and phagocytic activity of human blood leucocytes. Biochemistry Moscow 80, 925–933 (2015). https://doi.org/10.1134/S0006297915070111

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915070111

Keywords

Navigation