Skip to main content
Log in

Photobiosensors containing luminescent bacteria

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The scientific basis for producing luminescent biosensors containing free and immobilized luminescent bacteria is discussed. Modern technologies for engineering target objects, procedures used to immobilize bacteria in different carriers, as well as procedures for integral and specific biodetection of toxins are presented. Data regarding generation and application of biomonitoring for ecotoxicants derived from natural and genetically engineered photobacterial strains are analyzed. Special attention is given to immobilization of photobacteria in polyvinyl alcohol-containing cryogel. The main physicochemical, biochemical, and technological parameters for stabilizing luminescence in immobilized bacteria are described. Results of the application of immobilized photobacterial preparations both during discrete and continuous biomonitoring for different classes of ecotoxicants are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deryabin, D. G. (2009) Bacterial Chemiluminescence: Fundamental and Applied Aspects [in Russian], Nauka, Moscow.

    Google Scholar 

  2. Danilov, V. S., and Ismailov, A. D. (1989) Bacterial luciferase as a biosensor of biologically active compounds, in Applied Biosensors (Wise, D., ed.) Boston, pp. 39–78.

    Google Scholar 

  3. Mitchell, R. J., and Gu, M. B. (2006) Characterization and optimization of two method in the immobilization of 12 bioluminescent strains, Biosens. Bioelectron., 22, 192–199.

    Article  CAS  PubMed  Google Scholar 

  4. Parvez, S., Venkataraman, C., and Mukherji, S. (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals, Environ. Int., 32, 265–268.

    Article  CAS  PubMed  Google Scholar 

  5. Dizer, H., Wittekindt, E., Fischer, B., and Hansen, P. D. (2002) The cytotoxic and genotoxic potential of surface water and wastewater effluents as determined by bioluminescence, umu-assays and selected biomarkers, Chemosphere, 46, 225–233.

    Article  CAS  PubMed  Google Scholar 

  6. Yin, J., Li, X., Zhou, C., and Zhang, Y. (2005) Luminescent bacterial sensors made from immobilized films of Photobacterium phosphoreum, Chem. Res. Chinese Univ., 21, 44–47.

    CAS  Google Scholar 

  7. Yoo, S. K., Lee, J. H., Yun, S. S., Gu, M. B., and Lee, J. H. (2007) Fabrication of a bio-MEMS based cell-chip for toxicity monitoring, Biosens. Bioelectron., 22, 1586–1592.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, J. H., Mitchell, R. J., Kim, B. C., Cullen, D. C., and Gu, M. B. (2005) A cell array biosensor for environmental toxicity analysis, Biosens. Bioelectron., 21, 500–507.

    Article  CAS  PubMed  Google Scholar 

  9. Bulich, A. A. (1979) Use of luminescent bacteria for determining toxicity in aquatic environments, in Aquatic Toxicology. American Society for Testing and Materials (Markings, L. L., and Kimerleeds, R. A., eds.) Philadelphia, p. 8.

    Google Scholar 

  10. Sun, T. S., and Stahr, H. M. (1993) Evaluation and application of a bioluminescent bacterial genotoxicity test, J. AOAC Int., 76, 893–898.

    CAS  PubMed  Google Scholar 

  11. Verschaeve, L., Van Gompel, J., Thilemans, L., Regniers, L., Vanparys, P., and van der Lelie, D. (1999) VITOTOX bacterial genotoxicity and toxicity test for the rapid screening of chemicals, Environ. Mol. Mutagen., 33, 240–248.

    Article  CAS  PubMed  Google Scholar 

  12. Chun, U.-H., Simonov, N., Chen, Y., and Britzb, M. L. (1996) Continuous pollution monitoring using Photobacterium phosphoreum, Resour. Conserv. Recycl., 18, 25–40.

    Article  Google Scholar 

  13. Park, K. S., Baumstark-Khan, Ch., Rettberg, P., Horneck, G., Rabbow, E., and Gu, M. B. (2005) Immobilization as a technical possibility for long-term storage of bacterial biosensors, Radiat. Environ. Biophys., 44, 69–71.

    Article  CAS  PubMed  Google Scholar 

  14. Heitzer, A., Malachowsky, K., Thonnard, J. E., Bienkowski, P. R., White, D. C., and Sayler, G. S. (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium, Appl. Environ. Microbiol., 60, 1487–1494.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Van Dyk, T. K., Majarian, W. R., Konstantinov, K. B., Young, R. M., Dhurjati, P. S., and Larossa, R. A. (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions, Appl. Environ. Microbiol., 60, 1414–1420.

    PubMed Central  PubMed  Google Scholar 

  16. Belkin, Sh. (2003) Microbial whole-cell sensing systems of environmental pollutants, Curr. Opin. Microbiol., 6, 206–212.

    Article  CAS  PubMed  Google Scholar 

  17. Okamoto, K., Ishiura, M., Torii, T., and Aoki, S. (2007) A compact multi-channel apparatus for automated real-time monitoring of bioluminescence, J. Biochem. Biophys. Methods, 70, 535–538.

    Article  CAS  PubMed  Google Scholar 

  18. Polyak, B., Bassis, E., Novodvorets, A., Belkin, Sh., and Marks, R. S. (2001) Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization, Sens. Actuators B Chem., 74, 18–26.

    Article  CAS  Google Scholar 

  19. Sinitsin, A. P., Raynina, E. I., Lozinskiy, V. I., and Spasov, S. D. (1994) Immobilized Microbial Cells [in Russian], Moscow State University Publishers, Moscow.

    Google Scholar 

  20. Brodelius, P., and Vandamme, E. J. (1987) Immobilized cells systems, in Biotechnology. A Comprehensive Treatise (Rehm, H. J., and Reed, G., eds.) Vol. 7a, VCH Verlag, Weinheim, pp. 405–464.

    CAS  Google Scholar 

  21. Makiguchi, N., Arita, M., and Asai, Y. (1980) Immobilization of a luminous bacterium and light intensity of luminous material, J. Ferment. Technol., 58, 17–21.

    CAS  Google Scholar 

  22. Arnold, M. A. (1990) Fiber-optic biosensors, J. Biotechnol., 15, 219–228.

    Article  CAS  PubMed  Google Scholar 

  23. Kohler, S., Belkin, S., and Schmid, R. D. (2000) Reporter gene bioassays in environmental analysis, Fresenius J. Anal. Chem., 366, 769–779.

    Article  CAS  PubMed  Google Scholar 

  24. Yin, J., Li, X., Zhou, C., and Zhang, Y. (2005) Luminescent bacterial sensors made from immobilized films of Photobacterium phosphoreum, Chem. Res. Chinese Univ., 21, 44–47.

    CAS  Google Scholar 

  25. Blume, L. J., Gautier, S. M., and Coulet, P. R. (1993) Design of bioluminescence-based fiber optic sensors for flow-injection analysis, J. Biotechnol., 31, 357–368.

    Article  Google Scholar 

  26. Blume, L. J., Gautier, S. M., and Coulet, P. R. (1989) Design of luminescence photobiosensors, J. Biolum. Chemilum., 4, 543–550.

    Article  Google Scholar 

  27. Cho, J., Park, K., Ihm, H., Park, J., Kim, S., Kang, I., Lee, K., Jahng, D., Lee, K., and Kim, S. (2004) A novel continuous toxicity test system using a luminously modified freshwater bacterium, Biosens. Bioelectron., 20, 338–344.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, B., Lee, J., Shin, D., and Kim, E. (2006) Statistical optimization of bioluminescence Photobacterium phosphoreum KCTC 2852, Environ. Int., 32, 265–268.

    Article  Google Scholar 

  29. Marks, R., Polyak, B., Novodvorets, A., and Belkin, Sh. (2001) Bacterial biosensors for environmental analysis, G. I. T. Laboratory J., 3, 122–123.

    Google Scholar 

  30. Premkumar, J. R., Ovadia, L., Marks, R. S., Polyak, B., Rosen, R., and Belkin, Sh. (2001) Antibody-based immobilization of bioluminescent bacterial sensor cells, Talanta, 55, 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, S. K., Lee, B. S., Lee, J. G., Seo, H. J., and Kim, E. K. (2003) Continuous water toxicity monitoring using immobilized Photobacterium phosphoreum, Biotechnol. Bioproc. Eng., 8, 147–150.

    Article  CAS  Google Scholar 

  32. Kim, B. Ch., and Gu, M. B. (2005) A multi-channel continuous water toxicity monitoring system: its evaluation and application to water discharged from a power plant, Environ. Monit. Assess., 109, 123–133.

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J. H., and Gu, M. B. (2005) An integrated mini biosensor system for continuous water toxicity monitoring, Biosens. Bioelectron., 20, 1744–1749.

    Article  CAS  PubMed  Google Scholar 

  34. Lozinsky, V. I., and Plieva, F. M. (1998) Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. Overview of recent research and developments, Enzyme Microb. Technol., 23, 227–242.

    Article  CAS  Google Scholar 

  35. Varfolomeev, S. D., Rainina, E. I., Lozinsky, V. I., Kalyuzhnyi, S. B., Sinitsyn, A. P., Makhlis, T. A., Bachurina, G. P., Bokova, I. G., Sklyankina, O. A., and Agafonov, E. V. (1989) Application of poly(vinyl alcohol) cryogel for immobilization of mesophilic and thermophilic microorganisms, in Physiology of Immobilized Cells (de Bont, J. A. M, Visser, J., Mattiasson, B., and Tramper, J., eds.) Elsevier, Wageningen, pp. 325–330.

    Google Scholar 

  36. Makiguchi, N., Arita, M., and Asai, Y. (1980) Optimum cultural conditions for strong light production by Photobacterium phosphoreum, J. Gen. Appl. Microbiol., 26, 75–83.

    Article  CAS  Google Scholar 

  37. Makiguchi, N., Arita, M., and Asai, Y. (1980) Optimal conditions for frozen storage of immobilized luminous bacteria, J. Ferment. Technol., 58, 333–337.

    Google Scholar 

  38. Lozinskiy, V. N. (1998) A cryotropic gelation of polyvinyl alcohol solutions, Uspekhi Khim., 67, 641–655.

    Google Scholar 

  39. Bechor, O., Smulski, D. R., Van Dyk, T. K., LaRossa, R. A., and Belkin, S. (2002) Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA::lux fusions, J. Biotechnol., 94, 125–132.

    Article  CAS  PubMed  Google Scholar 

  40. Philp, J. C., Balmand, S., Hajto, E., Bailey, M. J., Wiles, S., Whiteley, A. S., Lilley, A. K., Hajto, J., and Dunbar, S. A. (2003) Whole cell immobilization biosensors for toxicity assessment of wastewater treatment plant treating phenolics-containing waste, Anal. Chim. Acta, 487, 61–74.

    Article  CAS  Google Scholar 

  41. Efremenko, E. N., Sen’ko, O. V., Kuts, V. V., Alenina, K. A., Kholstov, A. V., and Ismailov, A. D. (2010) A luminescent biocatalyst for detection of toxicants [in Russian], Patent No. 2394–10.

    Google Scholar 

  42. Efremenko, E. N., Aleskerova, L. E., Alenina, K. A., and Ismailov, A. D. (2014) Toxicological biosensors containing luminescent Photobacterium phosphoreum bacteria immobilized in polyvinyl alcohol-based cryogel, Prikl. Biokhim. Mikrobiol., 5, 490–496.

    Google Scholar 

  43. Alenina, K. A., Aleskerova, L. E., Kascheyeva, P. B., and Ismailov, A. D. (2012) The poly(vinyl alcohol)-immobilized photobacteria for toxicology monitoring, Engineering, 4, 118–119.

    Article  Google Scholar 

  44. Ismailov, A. D., Kutz, V. V., and Yefremenko, E. N. (2010) Factors affecting the stability of a light emission at PVA-immobilized cells of Photobacterium phosphoreum, J. Luminesc., 25, 166–167.

    Google Scholar 

  45. Aleskerova, L. E., Alenina, K. A., Efremenko, E. N., Mazhul’, M. M., Piskunkova, N. F., and Ismailov, A. D. (2014) ATP pool and bioluminescence activity in psychrophilic Photobacterium phosphoreum bacteria, Mikrobiologiya, 83, 315–321.

    CAS  Google Scholar 

  46. Kuts, V. V., Alenina, K. A., Sen’ko, O. V., Efremenko, E. N., and Ismailov, A. D. (2011) Bioluminescent analysis of toxicants (an ecological luminometry), Voda Khim. Ekol., 10, 47–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Ismailov.

Additional information

Original Russian Text © A. D. Ismailov, L. E. Aleskerova, 2015, published in Biokhimiya, 2015, Vol. 80, No. 6, pp. 867–881.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismailov, A.D., Aleskerova, L.E. Photobiosensors containing luminescent bacteria. Biochemistry Moscow 80, 733–744 (2015). https://doi.org/10.1134/S0006297915060085

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915060085

Key words

Navigation