Skip to main content
Log in

Normal level of sepsis-associated phenylcarboxylic acids in human serum

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Previous studies showed that large amounts of phenylcarboxylic acids (PhCAs) are accumulated in a septic patient’s blood due to increased endogenous and microbial phenylalanine and tyrosine biotransformation. Frequently, biochemical aromatic amino acid transformation into PhCAs is considered functionally insignificant for people without monogenetic hereditary diseases. The blood of healthy people contains the same PhCAs that are typical for septic patients as shown in this paper. The overall serum PhCAs level was 6 μM on average as measured by gas chromatography with flame ionization detection. This level is a stable biochemical parameter indicating the normal metabolism of aromatic amino acids. The concentrations of PhCAs in the metabolic profile of healthy people are distributed as follows: phenylacetic ≈ p-hydroxyphenyllactic > p-hydroxyphenylacetic > phenyllactic ≈ phenylpropionic > benzoic. We conclude that maintaining of stable PhCAs level in the serum is provided as the result of integration of human endogenous metabolic pathways and microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzoic acid

3,4-DHBA:

3,4-dihydroxybenzoic acid

GC-FID:

gas chromatography with flame ionization detection

GC-MS:

gas chromatography coupled with mass spectrometry

IR:

interquartile range

PAA:

phenylacetic acid

PhCAs:

phenylcarboxylic acids

p-HPAA:

p-hydroxyphenylacetic acid

p-HPPA:

p-hydroxyphenylpropionic acid

p-HPLA:

p-hydroxyphenyllactic acid

PLA:

phenyllactic acid

PPA:

phenylpropionic acid

PR:

percentile range

TMS:

trimethylsilyl

References

  1. Beloborodova, N. V., Olenin, A. Yu., Khodakova, A. S., Chernevckaya, Ek. A., and Khabib, O. N. (2012) The origin and clinical significance of low molecular weight phenolic metabolites in human serum, Anesteziol. Reanimatol., 5, 65–72.

    Google Scholar 

  2. Simon, R., Wetzel, W., Winsey, K., Levenson, S. M., and Demetriou, A. A. (1987) Supplemental dietary tyrosine in sepsis and acute hemorrhagic shock, Arch. Surg., 122, 78–81.

    Article  CAS  PubMed  Google Scholar 

  3. Williams, R. A., Mamotte, C. D., and Burnett, J. R. (2008) Phenylketonuria: an inborn error of phenylalanine metabolism, Clin. Biochem. Rev., 29, 31–41.

    PubMed Central  PubMed  Google Scholar 

  4. Kitagawa, T. (2012) Hepatorenal tyrosinemia, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 88, 192–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Beloborodova, N. V., Khodakova, A. S., Bairamov, I. T., and Olenin, A. Y. (2009) Microbial origin of phenylcarboxylic acids in the human body, Biochemistry (Moscow), 74, 1350–1355.

    Article  CAS  Google Scholar 

  6. Khodakova, A., and Beloborodova, N. (2007) Microbial metabolites in the blood of patients with sepsis, Crit. Care, 11(Suppl. 4), 5.

    Article  Google Scholar 

  7. Beloborodova, N. V., Osipov, A. A., and Bedova, A. Yu. (2013) Biological properties of certain low molecular weight aromatic microbial metabolites associated with sepsis, Antibiot. Khimioterap., 7/8, 36–49.

    Google Scholar 

  8. Beloborodova, N. V. (2012) Integration of metabolism in man and his microbiome in critical conditions, Obshch. Reanimatol., 4, 42–54.

    Article  Google Scholar 

  9. Cueva, C., Moreno-Arribas, M. V., Martin-Alvarez, P. J., Bills, G., Vicente, M. F., Basilio, A., Rivas, C. L., Requena, T., Rodriguez, J. M., and Bartolome, B. (2010) Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria, Res. Microbiol., 161, 372–382.

    Article  CAS  PubMed  Google Scholar 

  10. Dieuleveux, V., Lemarinier, S., and Gueguen, M. (1998) Antimicrobial spectrum and target site of D-3-phenyllactic acid, Int. J. Food Microbiol., 40, 177–183.

    Article  CAS  PubMed  Google Scholar 

  11. Fedotcheva, N. I., Kazakov, R. E., Kondrashova, M. N., and Beloborodova, N. V. (2008) Toxic effects of microbial phenolic acids on the functions of mitochondria, Toxicol. Lett., 180, 182–188.

    Article  CAS  PubMed  Google Scholar 

  12. Beloborodova, N., Bairamov, I., Olenin, A., Shubina, V., Teplova, V., and Fedotcheva, N. (2012) Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils, J. Biomed. Sci., 19, 89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Schmidt, S., Westhoff, T. H., Krauser, P., Zidek, W., and van der Giet, M. (2008) The uraemic toxin phenylacetic acid increases the formation of reactive oxygen species in vascular smooth muscle cells, Nephrol. Dial. Transplant., 23, 65–71.

    Article  CAS  PubMed  Google Scholar 

  14. Jenner, A. M., Rafter, J., and Halliwell, B. (2005) Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds, Free Radic. Biol. Med., 38, 763–772.

    Article  CAS  PubMed  Google Scholar 

  15. Knust, U., Erben, G., Spiegelhalder, B., Bartsch, H., and Owen, R. W. (2006) Identification and quantitation of phenolic compounds in faecal matrix by capillary gas chromatography and nano-electrospray mass spectrometry, Rapid Commun. Mass Spectrom., 20, 3119–3129.

    Article  CAS  PubMed  Google Scholar 

  16. Sarshor, Y. N., Beloborodova, N. V., Bedova, A. Y., Osipov, A. A., Chernevskaya, E. A., and Getsina, M. L. (2013) New criteria of bacterial load in critically ill patients, Shock, 40(Suppl. 1), 31.

    Google Scholar 

  17. Beloborodova, N. V., Bairamov, I. T., Olenin, A. Y., Khabib, O. N., and Fedotcheva, N. I. (2013) Anaerobic microorganisms from human microbiota produce speciesspecific exometabolites important in heath and disease, Global J. Pathol. Microbiol., 1, 43–53.

    Google Scholar 

  18. Moroz, V. V., Beloborodova, N. V., Bedova, A. Y., Revelsky, A. I., Getsina, M. L., Osipov, A. A., Sarshor, Y. N., Buchinskaya, A. A., and Olenin, A. Y. (2015) Development and adaptation to clinical laboratories of GC methods for determination of phenylcarboxylic acids in blood serum, Zh. Analit. Khim., 4, in press.

  19. Nasledov, A. (2013) IBM SPSS Statistics 20 and AMOS: Professional Statistical Analysis of the Data [in Russian], Piter, St. Petersburg.

    Google Scholar 

  20. Lang, T. A., and Sesik, M. (2011) How to Describe Statistics in Medicine [Russian translation] (Leonov, V. P., ed.) Prakticheskaya Meditsina, Moscow.

  21. Vente, J. P., von Meyenfeldt, M. F., van Eijk, H. M., van Berlo, C. L., Gouma, D. J., van der Linden, C. J., and Soeters, P. B. (1989) Plasma-amino acid profiles in sepsis and stress, Ann. Surg., 209, 57–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jeevanandam, M., Young, D. H., Ramias, L., and Schiller, W. R. (1990) Effect of major trauma on plasma free amino acid concentrations in geriatric patients, Am. J. Clin. Nutr., 51, 1040–1045.

    CAS  PubMed  Google Scholar 

  23. Askanazi, J., Carpentier, Y. A., Michelsen, C. B., Elwyn, D. H., Furst, P., Kantrowitz, L. R., Gump, F. E., and Kinney, J. M. (1980) Muscle and plasma amino acids following injury: influence of intercurrent infection, Ann. Surg., 192, 78–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Smith, E. A., and Macfarlane, G. T. (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism, J. Appl. Bacteriol., 81, 288–302.

    Article  CAS  PubMed  Google Scholar 

  25. Jones, M. R., Kopple, J. D., and Swendseid, M. E. (1978) Phenylalanine metabolism in uremic and normal man, Kidney Int., 14, 169–179.

    Article  CAS  PubMed  Google Scholar 

  26. Griffiths, L. A., and Barrow, A. (1972) Metabolism of flavonoid compounds in germ-free rats, Biochem. J., 130, 1161–1162.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., and Siuzdak, G. (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites, Proc. Natl. Acad. Sci. USA, 106, 3698–3703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Beloborodova.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 3, pp. 449–455.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloborodova, N.V., Moroz, V.V., Osipov, A.A. et al. Normal level of sepsis-associated phenylcarboxylic acids in human serum. Biochemistry Moscow 80, 374–378 (2015). https://doi.org/10.1134/S0006297915030128

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915030128

Key words

Navigation