Skip to main content
Log in

Directed evolution and characterization of atrazine chlorohydrolase variants with enhanced activity

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Atrazine chlorohydrolase (AtzA, EC 3.8.1.8) has attracted widespread interests as it catalyzes conversion of toxic atrazine to nontoxic hydroxyatrazine and can be used in the biodegradation of atrazine. To facilitate this application, a Haematococcus pluvialis-based method was applied to screen AtzA variants from a random mutagenesis library. Eight variants with enhanced enzyme activity were obtained. They showed 2.7- to 5.0-fold increase in specific activity compared with the wild type. Sequencing revealed that the two most active variants contained single substitution at Val12 and Leu395, respectively, while several improved variants contained substitutions at the four sites of Met315, His399, Asn429, and Val466 simultaneously, indicating that these residues contribute to the enzyme activity of AtzA. Kinetic analysis showed that five variants decreased the K m value 0.6- to 0.9-fold, whereas all the variants increased the catalytic efficiency (k cat/K m value) 2.5- to 4.1-fold compared to the wild type. The modeled three-dimensional structure showed that AtzA is comprised of a typical (β/α)8 domain of the amidohydrolase superfamily and a dual β-sheet domain. An iron ion and five ligand-binding residues are located in the β-barrel core of the (β/α)8 domain. Some substituted residues are involved in hydrogen bond formation in the (β/α)8-neighboring β-sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AtzA:

atrazine chlorohydrolase

BBM:

Bold’s basal medium

EP-PCR:

error-prone PCR

References

  1. Gavrilescu, M. (2005) Eng. Life Sci., 5, 497–526.

    Article  CAS  Google Scholar 

  2. Van der Meer, J. R. (2006) Front. Ecol. Environ., 4, 35–42.

    Article  Google Scholar 

  3. Rhine, E. D., Fuhrmann, J. J., and Radosevich, M. (2003) Microb. Ecol., 46, 145–160.

    Article  PubMed  CAS  Google Scholar 

  4. Erickson, L. E., Lee, K., and Sumner, D. D. (1989) Crit. Rev. Environ. Control, 19, 1–14.

    Article  CAS  Google Scholar 

  5. Macias-Flores, A., Tafoya-Garnica, A., Ruiz-Ordaz, N., Salmeron-Alcocer, A., Juarez-Ramirez, C., Ahuatzi-Chacon, D., Mondragon-Parada, M. E., and Galindez-Mayer, J. (2009) World J. Microbiol. Biotechnol., 25, 2195–2204.

    Article  CAS  Google Scholar 

  6. Zhang, Y., Jiang, Z., Cao, B., Hu, M., Wang, Z., and Dong, X. (2011) Int. Biodeter. Biodegr., 65, 1140–1141.

    Article  CAS  Google Scholar 

  7. De Souza, M. L., Wackett, L. P., Boundy-Mills, K. L., Mandelbaum, R. T., and Sadowsky, M. J. (1995) Appl. Environ. Microbiol., 61, 3373–3378.

    PubMed  Google Scholar 

  8. De Souza, M. L., Sadowsky, M. J., and Wackett, L. P. (1996) J. Bacteriol., 178, 4894–4900.

    PubMed  Google Scholar 

  9. Seffernick, J. L., McTavish, H., Osborne, J. P., de Souza, M. L., Sadowsky, M. J., and Wackett, L. P. (2002) Biochemistry, 41, 14430–14437.

    Article  PubMed  CAS  Google Scholar 

  10. Seibert, C. M., and Raushel, F. M. (2005) Biochemistry, 44, 6383–6391.

    Article  PubMed  CAS  Google Scholar 

  11. Rousseaux, S., Hartmann, A., Lagacherie, B., Piutti, S., Andreux, F., and Soulas, G. (2003) Chemosphere, 51, 569–576.

    Article  PubMed  CAS  Google Scholar 

  12. Strong, L. C., McTavish, H., Sadowsky, M. J., and Wackett, L. P. (2000) Environ. Microbiol., 2, 91–98.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, L., Samac, D. A., Shapir, N., Wackett, L. P., Vance, C. P., Olszewski, N. E., and Sadowsky, M. J. (2005) Plant Biotechnol. J., 3, 475–486.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, H., Chen, X., Xing, X., Hao, X., and Chen, D. (2010) Plant Cell Rep., 29, 1391–1399.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, K., and Arnold, F. H. (1993) Proc. Natl. Acad. Sci. USA, 90, 5618–5622.

    Article  PubMed  CAS  Google Scholar 

  16. Turner, N. J. (2009) Nat. Chem. Biol., 5, 567–573.

    Article  PubMed  CAS  Google Scholar 

  17. Scott, C., Jackson, C. J., Coppin, C. W., Mourant, R. G., Hilton, M. E., Sutherland, T. D., Russell, R. J., and Oakeshott, J. G. (2009) Appl. Environ. Microbiol., 75, 2184–2191.

    Article  PubMed  CAS  Google Scholar 

  18. Raillard, S., Krebber, A., Chen, Y., Ness, J. E., Bermudez, E., Trinidad, R., Fullem, R., Davis, C., Welch, M., Seffernick, J., Wackett, L. P., Stemmer, W. P. C., and Minshull, J. (2001) Chem. Biol., 8, 891–898.

    Article  PubMed  CAS  Google Scholar 

  19. Seffernick, J. L., and Wackett, L. P. (2001) Biochemistry, 40, 12747–12753.

    Article  PubMed  CAS  Google Scholar 

  20. Bischoff, H. W., and Bold, H. C. (1963) Phycological Studies IV, The University of Texas publication (6318), Austin, pp. 1–95.

    Google Scholar 

  21. Jones, A., Lamsa, M., Frandsen, T. P., Spendler, T., Harris, P., Sloma, A., Xu, F., Nielsen, J. B., and Cherry, J. R. (2008) J. Biotechnol., 134, 325–333.

    Article  PubMed  CAS  Google Scholar 

  22. Stemmer, W. P. (1994) Nature, 370, 389–391.

    Article  PubMed  CAS  Google Scholar 

  23. Brown, L. E., Sprecher, S. L., and Keller, L. R. (1991) Mol. Cell. Biol., 11, 2328–2332.

    PubMed  CAS  Google Scholar 

  24. Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  25. Kelley, L. A., and Sternberg, M. J. E. (2009) Nat. Protoc., 4, 363–371.

    Article  PubMed  CAS  Google Scholar 

  26. Wass, M. N., Kelley, L. A., and Sternberg, M. J. E. (2010) Nucleic Acids Res., 38, W469–W473.

    Article  PubMed  CAS  Google Scholar 

  27. Hernandez, M., Villalobos, P., Morgante, V., Gonzalez, M., Reiff, C., Moore, E., and Seeger, M. (2008) FEMS Microbiol. Lett., 286, 184–190.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, X., and Parales, R. E. (2009) Appl. Environ. Microbiol., 75, 5481–5488.

    Article  PubMed  CAS  Google Scholar 

  29. Yang, Z., Zhang, L., Zhang, Y., Zhang, T., Feng, Y., Lu, X., Lan, W., Wang, J., Wu, H., Cao, C., and Wang, X. (2011) PLoS One, 6, e22981.

    Article  PubMed  CAS  Google Scholar 

  30. Burgess, R. R. (2009) Methods Enzymol., 463, 259–282.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, D., Chen, X., and Cai, B. (2004) Acta Scientiarum Naturalium Universitatis Nankaiensis, 37, 109–114 [in Chinese].

    CAS  Google Scholar 

  32. Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., and Schwede, T. (2009) Nat. Protoc., 4, 1–13.

    Article  PubMed  CAS  Google Scholar 

  33. Ortiz, A. R., Strauss, C. E. M., and Olmea, O. (2002) Protein Sci., 11, 2606–2621.

    Article  PubMed  CAS  Google Scholar 

  34. Guo, H. H., Choe, J., and Loeb, L. A. (2004) Proc. Natl. Acad. Sci. USA, 101, 9205–9210.

    Article  PubMed  CAS  Google Scholar 

  35. Baker, D. (2000) Nature, 405, 39–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Chen or D. Chen.

Additional information

Published in Russian in Biokhimiya, 2013, Vol. 78, No. 10, pp. 1412–1421.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM13-062, August 18, 2013.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Li, X., Chen, X. et al. Directed evolution and characterization of atrazine chlorohydrolase variants with enhanced activity. Biochemistry Moscow 78, 1104–1111 (2013). https://doi.org/10.1134/S0006297913100040

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913100040

Key words

Navigation