Skip to main content
Log in

Oxidative phosphorylation and respiratory control phenomenon in Paracoccus denitrificans plasma membrane

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Changes in respiratory activity, transmembrane electric potential, and ATP synthesis as induced by additions of limited amounts of ADP and Pi to tightly coupled inverted (inside-out) Paracoccus denitrificans plasma membrane vesicles were traced. The pattern of the changes was qualitatively the same as those observed for coupled mitochondria during the classical State 4-State 3-State 4 transition. Bacterial vesicles devoid of energy-dependent permeability barriers for the substrates of oxidation and phosphorylation were used as a simple experimental model to investigate two possible mechanisms of respiratory control: (i) in State 4 phosphoryl transfer potential (ATP/ADP × Pi) is equilibrated with proton-motive force by reversibly operating F1·Fo-ATPase (thermodynamic control); (ii) in State 4 apparent “equilibrium” is reached by unidirectional operation of proton motive force-activated F1·Fo-ATP synthase. The data support the kinetic mechanism of the respiratory control phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\Delta \tilde \mu _{{\rm H}^ + }\) :

transmembrane electrochemical gradient of protons

F1 and Fo :

hydrophilic and hydrophobic parts of ATP synthase, respectively

FCCP:

carbonyl cyanide p-trifluoromethoxyphenylhydrazone

p :

proton motive force (p = ΔΨ − ΔpH) where ΔΨ is a transmembrane electric potential and ΔpH is pH difference between inner (matrix) and outer space of mitochondria

References

  1. Haldane, J. S., and Pries, J. G. (1935) Respiration, New Haven, Yale University Press.

    Google Scholar 

  2. Belitzer, V. A. (1939) Biokhimiya, 4, 408–501.

    Google Scholar 

  3. Belitzer, V. A., and Tzibakova, E. T. (1939) Biokhimiya, 4, 516–535.

    Google Scholar 

  4. Lardy, H. A., and Wellman, H. (1952) J. Biol. Chem., 195, 215–224.

    PubMed  CAS  Google Scholar 

  5. Chance, B., and Williams, G. R. (1955) J. Biol. Chem., 217, 383–393.

    PubMed  CAS  Google Scholar 

  6. Chance, B., and Williams, G. R. (1955) J. Biol. Chem., 217, 409–427.

    PubMed  CAS  Google Scholar 

  7. Nicholls, D. G., and Ferguson, S. J. (2002) Bioenergetics 3, Academic Press, London.

    Google Scholar 

  8. Wohlrab, H. (1986) Biochim. Biophys. Acta, 853, 115–134.

    Article  PubMed  CAS  Google Scholar 

  9. LaNoue, K., Mizani, S. M., and Klingenberg, M. (1978) J. Biol. Chem., 253, 191–198.

    PubMed  CAS  Google Scholar 

  10. Jacobus, W. E., Moreadith, R. W., and Vandegaer, K. M. (1982) J. Biol. Chem., 257, 2397–2402.

    PubMed  CAS  Google Scholar 

  11. Kuster, U., Bohnensack, R., and Kunz, W. (1976) Biochim. Biophys. Acta, 440, 391–402.

    Article  PubMed  CAS  Google Scholar 

  12. Klingenberg, M., and Schollmeyer, P. (1963) in Proc. 5th Int. Congr. Biochemistry, Moscow, 1961, Pergamon Press, Oxford, Vol. 5, pp. 46–68.

    Google Scholar 

  13. Holian, A., Owen, C. S., and Wilson, D. F. (1977) Arch. Biochem. Biophys., 181, 164–171.

    Article  PubMed  CAS  Google Scholar 

  14. Erecinska, M., and Wilson, D. F. (1982) J. Membr. Biol., 70, 1–14.

    Article  PubMed  CAS  Google Scholar 

  15. John, P., and Whatley, F. R. (1970) Biochim. Biophys. Acta, 216, 342–352.

    Article  PubMed  CAS  Google Scholar 

  16. John, P., and Hamilton, W. A. (1970) FEBS Lett., 10, 246–248.

    Article  PubMed  CAS  Google Scholar 

  17. Zharova, T. V., and Vinogrodov, A. D. (2003) Biochemistry (Moscow), 68, 1101–1108.

    Article  CAS  Google Scholar 

  18. Zharova, T. V., and Vinogrodov, A. D. (2004) J. Biol. Chem., 279, 12319–12324.

    Article  PubMed  CAS  Google Scholar 

  19. Zharova, T. V., and Vinogrodov, A. D. (2006) Biochemistry, 45, 14552–14558.

    Article  PubMed  CAS  Google Scholar 

  20. Kegyarikova, K. A. Zharova, T. V., and Vinogradov, A. D. (2010) Biochemistry (Moscow), 75, 1264–1271.

    Article  CAS  Google Scholar 

  21. Jacobus, W. E., and Saks, V. A. (1982) Arch. Biochem. Biophys., 219, 167–78.

    Article  PubMed  CAS  Google Scholar 

  22. Gostimskaya, I. S., Grivennikova, V. G., Zharova, T. V., Bakeeva, L. E., and Vinogradov, A. D. (2003) Anal. Biochem., 313, 46–52.

    Article  PubMed  CAS  Google Scholar 

  23. Chance, B., and Nishimura, M. (1967) Meth. Enzymol., 10, 641–650.

    Article  CAS  Google Scholar 

  24. Akerman, K. E., and Wikstrom, M. K. (1976) FEBS Lett., 68, 191–197.

    Article  PubMed  CAS  Google Scholar 

  25. Waggoner, A. S. (1979) Meth. Enzymol., 55, 689–695.

    Article  PubMed  CAS  Google Scholar 

  26. D’Alessandro, M., Turina, P., and Melandri, B. A. (2011) Biochim. Biophys. Acta, 1807, 130–143.

    Article  PubMed  Google Scholar 

  27. Feniouk, B. A., Suzuki, T., and Yoshida, M. (2007) J. Biol. Chem., 282, 764–772.

    Article  PubMed  CAS  Google Scholar 

  28. Ferguson, S. J., John, P., Lloyd, W. J., Radda, G. K., and Whatley, F. R. (1976) FEBS Lett., 62, 272–275.

    Article  PubMed  CAS  Google Scholar 

  29. Vasilyeva, E. A., Fitin, A. F., Minkov, I. B., and Vinogradov, A. D. (1980) Biochem. J., 188, 807–815.

    PubMed  CAS  Google Scholar 

  30. Vinogradov, A. D. (2000) J. Exp. Biol., 203, 41–49.

    PubMed  CAS  Google Scholar 

  31. Zharova, T. V., and Vinogradov, A. D. (1997) Biochim. Biophys. Acta, 1320, 256–264.

    Article  PubMed  CAS  Google Scholar 

  32. Junge, W. (1970) Eur. J. Biochem., 14, 582–592.

    Article  PubMed  CAS  Google Scholar 

  33. Fischer, S., Graber, P., and Turina, P. (2000) J. Biol. Chem., 275, 30157–30162.

    Article  PubMed  CAS  Google Scholar 

  34. Galkin, M. A., and Vinogradov, A. D. (1999) FEBS Lett., 448, 123–126.

    Article  PubMed  CAS  Google Scholar 

  35. Syroeshkin, A. V., Vasilyeva, E. A., and Vinogradov, A. D. (1995) FEBS Lett., 366, 29–32.

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki, T., Murakam, T., Iino, R., Suzuki, J., Ono, S., Shirakihara, Y., and Yoshida, M. (2003) J. Biol. Chem., 278, 46840–46846.

    Article  PubMed  CAS  Google Scholar 

  37. Haagsma, A. C., Driessen, N. N., Hahn, M. M., Lill, H., and Bald, D. (2010) FEMS Microbiol. Lett., 313, 68–74.

    Article  PubMed  CAS  Google Scholar 

  38. Feniouk, B. A., Suzuki, T., and Yoshida, M. (2006) Biochim. Biophys. Acta, 1757, 326–338.

    Article  PubMed  CAS  Google Scholar 

  39. Panchenko, M. V., and Vinogradov, A. D. (1989) Biokhimiya, 54, 569–579.

    CAS  Google Scholar 

  40. Vasil’eva, E. A., Panchenko, M. V., and Vinogradov, A. D. (1989) Biokhimiya, 54, 1490–1498.

    Google Scholar 

  41. Zanotti, F., Gnoni, A., Mangiullo, R., and Papa, S. (2009) Biochem. Biophys. Res. Commun., 384, 43–48.

    Article  PubMed  CAS  Google Scholar 

  42. Morales-Rios, E., de la Rosa-Morales, F., Mendoza-Hernandez, G., Rodriiguez-Zavala, J. S., Celis, H., Zarco-Zavala, M., and Garcia-Trejo, J. J. (2010) FASEB J., 24, 599–608.

    Article  PubMed  CAS  Google Scholar 

  43. Feniouk, B. A., and Yoshida, M. (2008) Results Prob. Cell Differ., 45, 279–308.

    Article  CAS  Google Scholar 

  44. Stocker, A., Keis, S., Vonck, J., Cook, G. M., and Dimroth, P. (2007) Structure, 15, 904–914.

    Article  PubMed  CAS  Google Scholar 

  45. Feynman, R. P., Leighton, R. B., and Sands, M. (1963) in The Feynman Lectures on Physics, Vol. 1, Chap. 46, Addison-Wesley Inc., Massachusetts, PaloAlto, London.

    Google Scholar 

  46. Padan, E., and Rottenberg, H. (1973) Eur. J. Biochem., 40, 431–437.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Vinogradov.

Additional information

Published in Russian in Biokhimiya, 2012, Vol. 77, No. 9, pp. 1207–1215.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zharova, T.V., Vinogradov, A.D. Oxidative phosphorylation and respiratory control phenomenon in Paracoccus denitrificans plasma membrane. Biochemistry Moscow 77, 1000–1007 (2012). https://doi.org/10.1134/S0006297912090064

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912090064

Key words

Navigation