Skip to main content
Log in

A biochemical approach to the problem of aging: “Megaproject” on membrane-penetrating ions. The first results and prospects

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Antioxidants specifically addressed to mitochondria have been studied for their ability to decelerate aging of organisms. For this purpose, a project has been established with participation of several research groups from Belozersky Institute of Physico-Chemical Biology and some other Russian research institutes as well as two groups from the USA and Sweden, with support by the “Mitotechnology” company founded by “RAInKo” company (O. V. Deripaska and Moscow State University). This paper summarizes the first results of the project and estimates its prospects. Within the framework of the project, antioxidants of a new type (SkQ) were synthesized comprising plastoquinone (an antioxidant moiety), a penetrating cation, and decane or pentane linker. Using planar bilayer phospholipid membranes, we selected SkQ derivatives with the highest penetrating ability, namely plastoquinonyl-decyl-triphenylphosphonium (SkQ1), plastoquinonyl-decylrhodamine 19 (SkQR1), and methylplastoquinonyl-decyl-triphenylphosphonium (SkQ3). Anti-and prooxidant properties of these substances and also of ubiquinone and ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested on isolated mitochondria. Micromolar concentrations of cationic quinones are found to be very strong prooxidants, but in lower (submicromolar) concentrations they display antioxidant activity. The antioxidant activity decreases in the series SkQ1 = SkQR1 > SkQ3 > MitoQ, so the window between the anti-and prooxidant effects is smallest for MitoQ. SkQ1 is rapidly reduced by complexes I and II of the mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Extremely low concentrations of SkQ1 and SkQR1 completely arrest the H2O2-induced apoptosis in human fibroblasts and HeLa cells (for SkQ1 C 1/2 = 1·10−9 M) Higher concentrations of SkQ are required to block necrosis initiated by reactive oxygen species (ROS). In mice, SkQ1 decelerates the development of three types of accelerated aging (progeria) and also of normal aging, and this effect is especially demonstrative at early stages of aging. The same pattern is shown in invertebrates (drosophila and daphnia). In mammals, the effect of SkQs on aging is accompanied by inhibition of development of such age-related diseases as osteoporosis, involution of thymus, cataract, retinopathy, etc. SkQ1 manifests a strong therapeutic action on some already developed retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM skQ1, vision is recovered in 50 of 66 animals who became blind because of retinopathy. SkQ1-containing drops instilled in the early stage of the disease prevent the loss of sight in rabbits with experimental uveitis and restore vision to animals that had already become blind. A favorable effect is also achieved in experimental glaucoma in rabbits. Moreover, the pretreatment of rats with 0.2 nmol SkQ1 per kg body weight significantly decreases the H2O2-induced arrhythmia of the isolated heart. SkQ1 strongly reduces the damaged area in myocardial infarction or stroke and prevents the death of animals from kidney infarction. In p53−/− mice, SkQ1 decreases the ROS level in the spleen cells and inhibits appearance of lymphomas which are the main cause of death of such animals. Thus, it seems reasonable to perform clinical testing of SkQ preparations as promising drugs for treatment of age-related and some other severe diseases of human and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δψ:

transmembrane electric potential

BLM:

planar bilayer phospholipid membrane

C12TPP:

dodecyl triphenylphosphonium

DMQ:

demethoxyMitoQ

MitoQ:

compound of ubiquinone and decyl triphenylphosphonium

ROS:

reactive oxygen species

SkQ:

compounds of plastoquinone or methylplastoquinone and decyl (or amyl) triphenylphosphonium, methylcarninite, or tributylammonium

SkQ1:

compound of plastoquinone and decyl triphenylphosphonium (other SkQ derivatives are shown in Fig. 3)

References

  1. Skulachev, V. P. (1999) Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  2. Skulachev, V. P. (2003) in Topics in Current Genetics. Model Systems in Ageing (Nystrom, T., and Osiewacz, H. D., eds.) Vol. 3, Springer-Verlag, Berlin-Heidelberg, pp. 191–238.

    Google Scholar 

  3. Lewis, K. (2000) Microbiol. Mol. Biol. Rev., 64, 503–514.

    Article  PubMed  CAS  Google Scholar 

  4. Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Nature Rev. Genet., 6, 866–872.

    Article  CAS  PubMed  Google Scholar 

  5. Skulachev, V. P. (2005) Vestn. Ros. Akad. Nauk, 75, 831–843.

    Google Scholar 

  6. Skulachev, V. P., and Longo, V. D. (2005) Ann. N. Y. Acad. Sci., 1057, 145–164.

    Article  PubMed  CAS  Google Scholar 

  7. Darwin, Ch. (1871) The Descent of Man, Murray, London.

    Google Scholar 

  8. Weissmann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Claderon Press, Oxford.

    Google Scholar 

  9. Harman, D. (1956) J. Gerontol., 11, 298–300.

    PubMed  CAS  Google Scholar 

  10. Skulachev, V. P. (1999) Mol. Asp. Med., 20, 139–184.

    Article  CAS  Google Scholar 

  11. Grivennikova, V. G., and Vinogradov, A. D. (2006) Biochim. Biophys. Acta, 1757, 553–561.

    Article  PubMed  CAS  Google Scholar 

  12. Lambert, A. J., Boysen, H. M., Buckingham, J. A., Yang, T., Podlutsky, A., Austad, S. N., Kunz, T. H., Buffenstein, R., and Brand, M. D. (2007) Aging Cell, 6, 607–618.

    Article  PubMed  CAS  Google Scholar 

  13. Buffenstein, R. (2005) J. Gerontol. Biol. Sci., 60, 1369–1377.

    Google Scholar 

  14. Andziak, B., and Buffenstein, R. (2006) Aging Cell, 5, 525–532.

    Article  PubMed  CAS  Google Scholar 

  15. Andziak, B., O’Connor, T. P., Qi, W., DeWaal, E. M., Pierce, A., Chaudhuri, A. R., van Remmen, H., and Buffenstein, R. (2006) Aging Cell, 5, 463–471.

    Article  PubMed  CAS  Google Scholar 

  16. Andziak, B., O’Connor, T. P., and Buffenstein, R. (2005) Mech. Ageing Dev., 126, 1206–1212.

    Article  PubMed  CAS  Google Scholar 

  17. Labinsky, N., Csiszar, A., Orosz, Z., Smith, K., Rivera, A., Buffenstein, R., and Ungvari, Z. (2006) Am. J. Physiol. Heart Circ. Physiol., 291, H2698–H2704.

    Article  CAS  Google Scholar 

  18. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Revoldi, P., Pandolfi, P. P., Lanfrancone, L., and Pelicci, P. G. (1999) Nature, 402, 309–313.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, X., Jiang, N., Hughes, B., Bigras, E., Shoubridge, E., and Hekimi, S. (2006) Gen. Dev., 19, 2424–2434.

    Article  CAS  Google Scholar 

  20. Chu, H.-P., Grigorian, I. A., Dorovkov, M. V., Nagele, R. G., Komarova, E. A., Gudkov, A. V., Harrison, D. E., and Ryazanov, A. G. (2007) Nature, in press.

  21. Hagen, T. M., Liu, J., Lykkesfeldt, J., Wehr, C. M., Ingersoll, R. T., Vinarsky, V., Bartholomew, J. C., and Ames, B. N. (2002) Proc. Natl. Acad. Sci. USA, 99, 1870–1875.

    Article  PubMed  CAS  Google Scholar 

  22. Atamna, H., Robinson, C., Ingersoll, R., Elliott, H., and Ames, B. N. (2001) FASEB J., 15, 196–204.

    Article  Google Scholar 

  23. Howes, R. M. (2006) Ann. N. Y. Acad. Sci., 1067, 22–26.

    Article  PubMed  CAS  Google Scholar 

  24. Goldstein, N. (2002) Biochemistry (Moscow), 67, 161–170.

    Article  CAS  Google Scholar 

  25. Liberman, E. A., Topali, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.

    Article  PubMed  CAS  Google Scholar 

  26. Grinius, L. L., Jasaitis, A. A., Kadziauskas, Yu. L., Liberman, E. A., Skulachev, V. P., Topali, V. P., Tsofina, L. M., and Vladimirova, M. A. (1970) Biochim. Biophys. Acta, 216, 1–12.

    Article  PubMed  CAS  Google Scholar 

  27. Bakeeva, L. E., Grinius, L. L., Jasaitis, A. A., Kuliene, V. V., Levitsky, D. O., Liberman, E. A., Severina, I. I., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 12–21.

    Google Scholar 

  28. Liberman, E. A., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.

    Article  PubMed  CAS  Google Scholar 

  29. Skulachev, V. P. (1989) Membrane Bioenergetics, Springer Verlag, Berlin.

    Google Scholar 

  30. Severin, S. E., Skulachev, V. P., and Yaguzinsky, L. S. (1970) Biokhimiya, 35, 1250–1257.

    CAS  Google Scholar 

  31. Smith, R. A., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999) Eur. J. Biochem., 263, 709–716.

    Article  PubMed  CAS  Google Scholar 

  32. Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.

    Article  PubMed  CAS  Google Scholar 

  33. Murphy, M. P., and Smith, R. A. (2007) Annu. Rev. Pharmacol. Toxicol., 47, 629–656.

    Article  PubMed  CAS  Google Scholar 

  34. James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) J. Biol. Chem., 280, 21295–21312.

    Article  PubMed  CAS  Google Scholar 

  35. Kelso, G. F., Porteous, C. M., Hughes, G., Ledgerwood, E. C., Gane, A. M., Smith, R. A., and Murphy, M. P. (2002) Ann. N. Y. Acad. Sci., 959, 263–274.

    Article  PubMed  CAS  Google Scholar 

  36. Saretzki, G., Murphy, M. P., and von Zglinicki, T. (2003) Aging Cell, 2, 141–143.

    Article  PubMed  CAS  Google Scholar 

  37. Jauslin, M. L., Meier, T., Smith, R. A., and Murphy, M. P. (2003) FASEB J., 17, 1972–1974.

    PubMed  CAS  Google Scholar 

  38. Antonenko, Yu. N., Archipova, L. T., Archipova, M. M., Bakeeva, L. E., Chernyak, B. F., Domnina, L. V., Fursova, A. Zh., Grigorian, E. N., Ivanova, O. Yu., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Korshunova, G. A., Kovaleva, N. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Philippov, P. P., Pletjushkina, O. Yu., Pustovidko, A. V., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Senin, I. I., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sotnikova, L. F., Sumbatyan, N. V., Tashlitsky, V. N., Trofimova, N. A., Vassiliev, Yu. M., Vyssokikh, M. Yu., Yaguzhinsky, L. S., and Skulachev, V. P. (2007), in press.

  39. Lakowski, B., and Hekimi, S. (1996) Science, 272, 1010–1013.

    Article  PubMed  CAS  Google Scholar 

  40. Kruk, J., Jemiola-Rzeminska, M., and Strzalka, K. (1997) Chem. Phys. Lipids, 87, 73–80.

    Article  CAS  Google Scholar 

  41. Roginsky, V., Barsukova, T., Loshadkin, D., and Pliss, E. (2003) Chem. Phys. Lipids, 125, 49–58.

    Article  PubMed  CAS  Google Scholar 

  42. Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., Pletjushkina, O. Yu., Saprunova, V. B., Skulachev, I. V., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzhinsky, L. S., and Zorov, D. B. (2004) Mol. Cell. Biochem., 256/257, 341–358.

    Article  CAS  Google Scholar 

  43. Skulachev, V. P., et al., in preparation.

  44. Trifunovic, A., Wreeenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly, Y. M., Gidlof, S., Oldfors, A., Wilbom, R., Tornell, J., Jacobs, H. T., and Larsson, N.-G. (2004) Nature, 429, 417–423.

    Article  PubMed  CAS  Google Scholar 

  45. Solov’eva, N. A., Morozkova, T. S., and Salganik, R. I. (1975) Genetika, 11, 63–71.

    PubMed  CAS  Google Scholar 

  46. Kolosova, N. G., Lebedev, P. A., Aidagulova, S. V., and Morozkova, T. S. (2003) Bull. Exp. Biol. Med., 136, 415–419.

    Article  PubMed  CAS  Google Scholar 

  47. Sergeeva, S., Bagryanskaya, E., Korbolina, E., and Kolosova, N. (2006) Exp. Gerontol., 41, 141–150.

    Article  PubMed  CAS  Google Scholar 

  48. Kolosova, N. G., Shcheglova, T. V., Sergeeva, S. V., and Loskutova, L. V. (2006) Neurobiol. Aging, 27, 1289–1297.

    Article  PubMed  CAS  Google Scholar 

  49. Vlachantoni, D., Tulloch, B., Taylor, R. W., Turnbull, D. M., Murphy, M. P., and Wright, A. F. (2006) Invest. Ophthalmol. Vis. Sci., E-5773.

  50. Rajendram, R., Saraswathy, S., and Rao, N. A. (2007) Br. J. Ophthalmol., 91, 531–537.

    Article  PubMed  Google Scholar 

  51. Moreno, M. C., Campanelli, J., Sande, P., Sanez, D. A., Keller Sarmiento, M. I., and Rosenstein, R. E. (2004) Free Rad. Biol. Med., 37, 803–812.

    Article  PubMed  CAS  Google Scholar 

  52. Madeo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S. J., Wolf, D. H., and Frohlich, K.-U. (1999) J. Cell Biol., 145, 757–767.

    Article  PubMed  CAS  Google Scholar 

  53. Anisimov, V. N., Semenchenko, A. V., and Yashin, A. I. (2003) Biogerontology, 4, 297–307.

    Article  PubMed  CAS  Google Scholar 

  54. Hamilton, W. D. (1964) J. Theor. Biol., 7, 1–16, 17–52.

    Article  PubMed  CAS  Google Scholar 

  55. Dowkins, R. (1976) The Selfish Gene, Oxford University Publishers, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Skulachev.

Additional information

Original Russian Text © V. P. Skulachev, 2007, published in Biokhimiya, 2007, Vol. 72, No. 12, pp. 1700–1714.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skulachev, V.P. A biochemical approach to the problem of aging: “Megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry Moscow 72, 1385–1396 (2007). https://doi.org/10.1134/S0006297907120139

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297907120139

Key words

Navigation