Skip to main content
Log in

On the crystal ground state in the Schrödinger–Poisson model with point ions

  • Short Communications
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

A space-periodic ground state is shown to exist for lattices of point ions in R3 coupled to the Schrödinger and scalar fields. The coupling requires renormalization due to the singularity of the Coulomb self-action. The ground state is constructed by minimizing the renormalized energy per cell. This energy is bounded from below when the charge of each ion is positive. The elementary cell is necessarily neutral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Born and J. R. Oppenheimer, “ZurQuantentheorie der Molekeln,” Annalen der Physik 389 (20), 457–484 (1927).

    Article  MATH  Google Scholar 

  2. I.M. Lifshits, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (Consultants Bureau, New York, 1973).

    MATH  Google Scholar 

  3. R. E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 2001).

    Book  MATH  Google Scholar 

  4. X. Blanc, C. Le Bris, and P.-L. Lions, “A definition of the ground state energy for systems composed of infinitely many particles,” Comm. Partial Diff. Eq. 28 (1–2), 439–475 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  5. E. H. Lieb and B. Simon, “The Hartree–Fock theory for Coulomb systems,” Comm. Math. Phys. 53, 185–194 (1977).

    Article  MathSciNet  Google Scholar 

  6. P.-L. Lions, “Some remarks on Hartree equation,” Nonlinear Anal., Theory Methods Appl. 5, 1245–1256 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. P.-L. Lions, “Solutions of Hartree–Fock equations for Coulomb systems,” Commun. Math. Phys. 109, 33–97 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Nier, “Schrödinger–Poisson systems in dimension d = 3: The whole-space case,” Proc. R. Soc. Edinb., Sec. A 123 (6), 1179–1201 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Cancès and C. Le Bris, “On the time-dependent Hartree–Fock equations coupled with a classical nuclear dynamics,” Math. ModelsMethods Appl. Sci. 9 (7), 963–990 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. J. Dyson and A. Lenard, “Stability of matter, I,” J.Math. Phys. 8, 423–43 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. H. Lieb, The Stability of Matter: From Atoms to Stars. Selecta of Elliott H. Lieb (Springer, Berlin, 2005).

    Book  MATH  Google Scholar 

  12. E. H. Lieb and J. L. Lebowitz, “The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei,” Adv. Math. 9 (3), 316–398 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. H. Lieb and R. Seiringer, The Stability of Matter in QuantumMechanics (Cambridge University Press, Cambridge, 2009).

    Book  MATH  Google Scholar 

  14. M. C. Lemm, Stability of Matter, Ph. D. dissertation (LMU,ss, The thermodynamic limit for matMÜnchen, 2010).

    Google Scholar 

  15. E. H. Lieb and M. Loter “interacting with Coulomb forces and with the quantized electromagnetic field: I. The lower bound,” Comm. Math. Phys. 258, 675–695 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Blanc, C. Le Bris, and P.-L. Lions, “The energy of some microscopic stochastic lattices,” Arch. Ration. Mech. Anal. 184 (2), 303–339 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Catto, C. Le Bris, and P.-L. Lions, “Thermodynamic limit for Thomas–Fermi type models,” C. R. Acad. Sci., Paris, Sér. I 322 (4), 357–364 (1996).

    MathSciNet  MATH  Google Scholar 

  18. L. Catto, C. Le Bris, and P.-L. Lions, The Mathematical Theory of Thermodynamic Limits: Thomas–Fermi Type Models (Clarendon Press, Oxford, 1998).

    MATH  Google Scholar 

  19. L. Catto, C. Le Bris, and P.-L. Lions, “On the thermodynamic limit for Hartree–Fock type models,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (6), 687–760 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Catto, C. Le Bris, and P.-L. Lions, “On some periodic Hartree-type models for crystals,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19 (2), 143–190 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Le Bris and P.-L. Lions, “From atoms to crystals: A mathematical journey,” Bull. Am. Math. Soc., New Ser. 42 (3), 291–363 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Giuliani and J. L. Lebowitz and E. H. Lieb, “Periodic minimizers in 1D local mean field theory,” Comm. Math. Phys. 286, 163–177 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. I. Komech, “On crystal ground state in the Schrödinger–Poisson model,” SIAM J. Math. Anal. 47 (2), 1001–1021 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  24. R. A. Adams, J. J. Fournier, and J. F. John, Sobolev Spaces (Elsevier–Academic Press, Amsterdam, 2003).

    MATH  Google Scholar 

  25. S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics (AMS, Providence, RI, 1991).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Komech.

Additional information

The article was submitted by the author for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komech, A.I. On the crystal ground state in the Schrödinger–Poisson model with point ions. Math Notes 99, 886–894 (2016). https://doi.org/10.1134/S0001434616050278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616050278

Keywords

Navigation