Skip to main content
Log in

Determination of troposphere characteristics using signals of satellite navigation systems

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Based on two-frequency phase measurements of GNSS signals by ground-based receivers, zenith delays of radio signals in the troposphere are estimated. These estimates are compared with the NCEP/NCAR reanalysis data on weather fields. It is shown that the standard deviation in the values of zenith delays obtained in both ways is about 1 cm on average. According to our calculations, such a level of accuracy permits one to study the interday and intraday dynamics of the troposphere. The temporal resolution of estimates based on the GNSS data is 2 h, which makes it possible to organize atmosphere monitoring using a ground-based network of satellite tracking systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. P. Tverskoi, Lectures in Meteorology (Atmospheric Physics) (Gidrometeoizdat, Leningrad, 1962) [in Russian].

    Google Scholar 

  2. P. Basili, S. Bonafoni, R. Ferrara, et al., “Experimental Campaign for the Assessment of Atmospheric Water Vapor Retrieval by means of a GPS Network,” IEEE Proc. Microw. Antennas Propag. 147(1), 3078–3080 (2000).

    Google Scholar 

  3. R. H. Ware, D. W. Fulker, and S. A. Stein, et al., “Real-Time National GPS Networks for Atmospheric Sensing,” J. Atmos. Sol.-Terr. Phys. 63(12), 1315–1330 (2001).

    Article  Google Scholar 

  4. B. Stoew, G. Elgered, and J. Johansson, “An Assessment of Estimates of Integrated Water Vapor from Ground-Based GPS Data,” Meteorol. Atmos. Phys. 77, 99–107 (2001).

    Article  Google Scholar 

  5. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System. Theory and Practice (Springer, New York, 2001).

    Book  Google Scholar 

  6. J. M. Rueger, “Refractive Index Formulae for Electronic Distance Measurement with Radio and Millimeter Waves,” Unisurv Rep. S-68, 13–52 (2002).

    Google Scholar 

  7. J. M. Aparicio, G. Deblonde, L. Garand, et al., “Signature of the Atmospheric Compressibility Factor in COSMIC, CHAMP, and GRACE Radio Occultation Data,” J. Geophys. Res. 114, D16114 (2009). doi 10.1029/2008JD011156

    Article  Google Scholar 

  8. C. Rocken, S. Sokolovskiy, J. Johnson, and et al., “Improved Mapping of Tropospheric Delays,” J. Atmos. Oceanic Technol. 18(7), 1205–1213 (2001).

    Article  Google Scholar 

  9. T. Schuler, On Ground-Based GPS Tropospheric Delay Estimation, Ph. D. Thesis, (Univ. of Munchen, Munchen, 2001).

    Google Scholar 

  10. O. G. Khutorova, A. A. Vasil’ev, and V. E. Khutorov, “On the Prospects of Studies in the Nonuniform Structure of the Troposphere Using GPS-GLONASS Receivers,” Opt. Atmos. Okeana 23(6), 510–514 (2010).

    Google Scholar 

  11. X. Guochang, GPS. Theory, Algorithms and Applications (Springer, Berlin, 2007).

    Google Scholar 

  12. R. Paul and B. Remondi, The National Geodetic Survey Standard GPS Format SP3, NGS NOAA, 2006. http://igscb.jpl.nasa.gov/igscb/data/format/sp3-docu.txt

  13. V. V. Kalinnikov, “The Analysis of Influence of Errors Ephemerides on an Estimation Ionospheric and Tropospheric Parameters on Radio Signals of Systems GPS-GLONASS,” Radioecol. Appl. Ecol. 15(1–2), 13–20 (2009).

    Google Scholar 

  14. M. Standish and J. Williams, “Orbital Ephemerides of the Sun, Moon, and Planets,” in Explanatory Supplement to the Astronomical Almanac (University Science Books, Sausalito, CA, 2006), pp. 279–323.

    Google Scholar 

  15. M. A. Kolosov, N. A. Armand, and O. I. Yakovlev, Radiowave Propagation in Space Radio Communication (Svyaz’, Moscow, 1968) [in Russian].

    Google Scholar 

  16. U. Wild, Ionosphere and Geodetic Satellite Systems: Permanent GPS Tracking Data for Modeling and Monitoring (Swiss Geodetic Commission, Zurich, 1994).

    Google Scholar 

  17. S. Shaer, Mapping and Predicting Earth’s Ionosphere Using the Global Positioning System, Inaugural Dissertation (University of Bern, Bern, 1999).

    Google Scholar 

  18. V. V. Vorob’ev and V. Kan, “Background Fluctuations in Ionospheric Radio Transmission in the GPS-Microlab-1 Experiments,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42(6), 511–523 (1999).

    Google Scholar 

  19. O. I. Yakovlev, A. G. Pavel’ev, and S. S. Matyugov, Satellite Monitoring of the Earth (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  20. V. V. Kalinnikov and O. G. Khutorova, “Influence of Double Differences System Errors of GNSS Phase Measurements on Estimation of Atmospheric Parameters,” Radioecol. Appl. Ecol. 16(1), 21–27 (2010).

    Google Scholar 

  21. G. Mader, GPS Antenna Calibration at the National Geodetic Survey, NGS, NOAA. http://www.ngs.noaa.gov

  22. N. Raziq and P. Collier, “High Precision GPS Deformation Monitoring using Single Receiver Carrier Phase Data,” in Geodetic Deformation Monitoring: From Geophysical to Engineering Roles, Proc. of the Int. Association of Geodesy Symposium March 17–19, 2005, Spain (Springer, Berlin, 2006), pp. 95–102..

    Chapter  Google Scholar 

  23. V. V. Kalinnikov, O. G. Khutorova, and G. M. Teptin, “Analysis of Estimation Accuracy Factors for Some Atmospheric Characteristics by GLONASS and GPS Receivers in the Differential Regime,” Zh. Ekol. Prom. Bezop., No. 3, 38–39 (2010).

  24. International Earth Rotation Service. http://www.iers.org

  25. J. Marin, “Correction of Satellite Tracking Data for an Arbitrary Tropospheric Profile,” Radio Sci. 7(2), 223–231 (1972).

    Article  Google Scholar 

  26. A. Niel, “Global Mapping Functions for the Atmosphere Delay at Radio Wavelengths,” J. Geophys. Res. Solid Earth 101(B2), 3227–3246 (1996).

    Article  Google Scholar 

  27. J. Boehm, B. Werl, and H. Schuh, “Troposphere Mapping Functions for GPS and VLBI from ECMWF Operational Analysis Data,” J. Geophys. Res. Solid Earth 111(B02406) (2006).

  28. V. Mendes, Modeling the Neutral-Atmospheric Propagation Delay in Radiometric Space Techniques (Univ. of New Brunswick, Brunswick, 1999).

    Google Scholar 

  29. Yu. I. Markuze, Basics of the Least Squares Method and Equalizing Computations (MIIGAiK, Moscow, 2005) [in Russian].

    Google Scholar 

  30. NOAA Earth System Research Laboratory. http://www.esrl.noaa.gov

  31. Q. Chen, S. Song, S. Heise, et al., “Assessment of ZTD Derived from ECMWF/NCEP Data with GPS ZTD over China,” GPS Solutions (2011). doi 10.1007/s10291-010-0200-x

  32. H. Vedel, S. Mogensen, and X.-Y. Huang, “Calculation of Zenith Delays from Meteorological Data, Comparison of NWP Model, Radiosonde and GPS Delays,” Phys. Chem. Earth. 26(6–8), 497–502 (2001).

    Google Scholar 

  33. O. G. Khoutorova and G. M. Teptin, “An Investigation of Mesoscale Wave Processes in the Surface Layer Using Synchronous Measurements of Atmospheric Parameters and Admixtures,” Izv., Atmos. Ocean. Phys. 45(5), 549–556 (2009).

    Article  Google Scholar 

  34. G. M. Teptin, O. G. Khutorova, D. P. Zinin, et al., “Study of Mesoscale Inhomogeneities in the Coefficient of Radiowave Refraction in the Troposphere by Numerical Modeling Methods,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 53(1), 1–13 (2010).

    Google Scholar 

  35. J. Grove-Rasmussen, Atmospheric water Vapour Detection using Satellite GPS Profiling, Ph.D. Thesis, (Danish Meteorological Institute, Copenhagen, 2002).

    Google Scholar 

  36. O. G. Khutorova, “A Technique for Studying the Impact of Planetary Waves on the Variation of Aerosol Optical Thickness,” Opt. Atmos. Okeana 22(4), 392–396 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kalinnikov.

Additional information

Original Russian Text © V.V. Kalinnikov, O.G. Khutorova, G.M. Teptin, 2012, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2012, Vol. 48, No. 6, pp. 705–713.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinnikov, V.V., Khutorova, O.G. & Teptin, G.M. Determination of troposphere characteristics using signals of satellite navigation systems. Izv. Atmos. Ocean. Phys. 48, 631–638 (2012). https://doi.org/10.1134/S0001433812060060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433812060060

Keywords

Navigation