Skip to main content
Log in

The role of cosmic and ionospheric disturbances in global climatic changes and pipeline corrosion

Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Physical causes controlling the influence of the main cosmic factors on the state of the ionosphere and, further, on weather and climatic phenomena, including the global warming, are investigated. These investigations are based on the Rydberg excitation of the experimentally observed microwave radiation of the Earth’s ionosphere by energetic ionospheric electrons. This microwave radiation virtually freely penetrates into the lower atmosphere, providing channels for the influence of solar variability on terrestrial phenomena. The factors causing an anomalous wear of Russian pipeline systems are also analyzed, and the methods for reducing their rapid corrosion through taking into account the influence of heliogeomagnetic and ionospheric disturbances are described. Such investigations are supported by the space experiment on permanent monitoring of the factors controlling heliogeomagnetic activity, i.e., fluxes of ionizing radiation of the Sun and fluxes of electrons precipitating from the radiation belts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aref’ev, V.N., Kashin, F.V., Semenov, V.K., Akimenko, R.M., Kamenogradskii, N.E., Sizov, N.I., Sinyakov, V.P., Upenek, L.B., and Ustinov, V.P., Water Vapor in the Atmosphere over the Northern Tien Shan, Izv. Atmos. Ocean. Phys., 2006, vol. 42, no. 6, pp. 739–751.

    Article  Google Scholar 

  • Avakyan, S.V., A New Factor in the Physics of Solar-Terrestrial Relationships-the Rydberg States of Atoms and Molecules, in Tez. dokl. Mezhd. konf. po fizike solnechno-zemnykh svyazei (Proc. Int. Conf. on the Physics of Solar-Terrestrial Relationships), Almaty, 1994, pp. 3–5.

  • Avakyan, S.V., Microwave Radiation of the Ionosphere as a Factor in the Impact of Solar Flares and Geomagnetic Storms on Biological Systems, Opt. Zh., 2005, vol. 72, no. 8, pp. 41–48.

    Google Scholar 

  • Avakyan, S.V., Space Solar Patrol: Absolute Measurements of Ionizing Solar Radiation, Adv. Space Res., 2006a, vol. 37, no. 2, pp. 297–302.

    Article  Google Scholar 

  • Avakyan, S.V., Microwave Ionospheric Emission as a New Factor of Solar-Biosphere Relations, in Proc. 4th Int. Workshop Biological Effects of Electromagnetic Fields, Crete, 2006b, pp. 1513–1522.

  • Avakyan, S.V., Physics of the Solar-Terrestrial Coupling: Results, Problems, and New Approaches, Geomagn. Aeron., 2008, vol. 48, no. 4, pp. 417–424.

    Article  Google Scholar 

  • Avakyan, S.V., Optics in the Global Changes of Environment, Armen. J. Phys., 2009, vol. 2, no. 1, pp. 15–35.

    Google Scholar 

  • Avakyan, S.V., Challenge to the Solar-Terrestrial Physics and the Prospects for an Answer that Will Allow the Current Problems to Be Solved, in Tr. Vseros. Konf. po fizike Solntsa: God astronomii: solnechnaya i solnechnozemnaya fizika-2009, 5–11 iyulya 2009 g. (Proc. All-Russia. Conf. on the Physics of the Sun: Year of Astronomy. Solar and Solar-Terrestrial Physics-2009, July 5–11, 2009), St. Petersburg, 2009, pp. 27–29.

  • Avakyan, S.V., Channels of Influence of Cosmophysical Factors on the Weather and Climatic Characteristics, in Tr. Vseros. konf. po fizike Solntsa: Solnechnaya i solnechno-zemnaya fizika-2010, 3–9 oktyabrya 2010 g. (Proc. All-Russia. Conf. on the Physics of the Sun: Solar and Solar-Terrestrial Physics-2010, October 3–9, 2010), St. Petersburg: GAO, 2010, p. 4.

    Google Scholar 

  • Avakyan, S.V. and Voronin, N.A., Possible Mechanisms for the Influence of Heliogeophysical Activity on the Biosphere and Weather, J. Opt. Technol., 2006a, vol. 73,iss. 4, pp. 281–285.

    Article  Google Scholar 

  • Avakyan, S.V. and Voronin, N.A., Heliospheric-Ionospheric Microwave Radiation as a Single Agent of Control of the Biosphere and Weather, in Tr. Mezhd. Konf. “Pogoda i biosistemy” (Proc. Int. Conf. “Weather and Biosystems”), St. Petersburg: RGGMU, 2006b, pp. 118–132.

    Google Scholar 

  • Avakyan, S.V. and Voronin, N.A., Weather Control by Heliospheric-Ionospheric Microwave Radiations, in Tr. X Pulkovskoi Mezhd. konf. po fizike Solntsa: Kvaziperiodicheskie protsessy na Solntse i ikh geoeffektivnye proyavleniya (Proc. X Pulkovo Int. Conf. on the Physics of the Sun: Quasi-Periodic Processes on the Sun and Their Geoeffective Manifestations), St. Petersburg: GAO, 2006c, pp. 223–230.

    Google Scholar 

  • Avakyan, S.V. and Voronin, N.A., Condensation Process in the Low Atmosphere and Microwave Radiation of the Sun and Ionosphere, in Proc. 6th Int. Conf. Problem of Geocosmos. May 23–27, 2006, St. Petersburg: SPbSU, 2006d, pp. 24–29.

    Google Scholar 

  • Avakyan, S.V. and Voronin, N.A., Possible Physical Mechanism of Action of Solar and Geomagnetic Activity on Events in the Lower Atmosphere, Issled. Zemli Kosmosa, 2007, no. 2, pp. 28–33.

  • Avakyan, S.V. and Voronin, N.A., The Ionospheric Possible Mechanism of Warming and Its Influence Today, in Proc. 8th Int. Conf. Problem of Geocosmos, September 20–24, 2010, St. Petersburg: SPbSU, 2010a, pp. 27–29.

    Google Scholar 

  • Avakyan, S.V. and Voronin, N.A., On the Radiooptical and Optical Mechanism of Influence of Cosmic Factors on the Global Warming, J. Opt. Technol., 2010b, vol. 77, no. 2, pp. 141–144.

    Article  Google Scholar 

  • Avakyan, S.V., Afanas’ev, I.M., Bogdanov, V.G., Bortkevich, S.V., Voronin, N.A, Efremov, A.I., Zotkin, I.A., Ivanov, A.P., Izotov, A.B., Kornilov, V.N., Kuvaldin, E.V., Kupriyanov, V.N., Lebedinskaya, M.L., Leonov, N.B., Lekhanov, E.F., Pribylovskii, I.M., Sazonov, G.V., Savushkin, A.V., Serova, A.E., and Chernikov, D.A., Research in the GOI of X-Ray and Extreme Ultraviolet Solar Radiation, J. Opt. Technol., 2008, vol. 75,iss. 12, pp. 785–791.

    Article  Google Scholar 

  • Avakyan, S.V., Andreev, E.P., Afanas’ev, I.M., Leonov, N.B., Savushkin, A.V., and Serova, A.E., Creating of the Permanent Space Patrol of Ionizing Solar Radiation, in Innovative Telescopes and Instrumentation for Solar Astrophysics, Keil, S.L. and Avakyan, S.V., Eds., Proc. SPIE, 2002, vol. 4853, pp. 600–611.

  • Avakyan, S.V., Baranova, L.A., Kuvaldin, E.V., Leonov, N.B., Savinov, E.P., Savuyshkin, A.V., Voronin, N.A., Kovalenok, V.V., Savinykh, V.P., Pindurin, V.F., and Nikolenko, A.D., Space Solar Patrol Data and the Weather-Climate Changes, Including the Global Warming, in Proc. 9th Int. Symp. Measurement Technology and Intelligent Instruments, ISTC Special Session, St. Petersburg, Russia, 2009, pp. 22–43.

    Google Scholar 

  • Avakyan, S.V., Baranova, L.A., Leonov, N.B., Savinov, E.P., and Voronin, N.A., Space Solar Patrol Data and Changes in Weather and Climate, Including Global Warming, Measur. Sci. Technol., 2010, vol. 21, no. 8, p. 15. doi: 10.1088/0957-0233/21/8/085301

    Article  Google Scholar 

  • Avakyan, S.V., Bolgartseva, M.P., Efremov, A.I., Krinberg, I.A., Kulakov, A.P., Petrov, V.S., Podmoshenskii, A.L., Pribylovskii, I.M., Sazonov, G.V., and Shaulin, Yu.N., Fluxes of Electrons During a Magnetic Storm on December 14–15, 1970, according to Kosmos-381 Satellite, in Issled. Geomagnet. Aeronom. Fiz. Solntsa, 1974, no. 32, pp. 158–161.

  • Avakyan, S.V., Vdovin, A.I., and Pustarnakov, V.F., Ioniziruyushchie i pronikayushchie izlucheniya v okolozemnom kosmicheskom prostranstve. Spravochnik (Ionizing and Penetrating Radiation in the Near-Earth Space: A Reference Book), St. Petersburg: Gidrometeoizdat, 1994.

    Google Scholar 

  • Avakyan, S.V., Voronin, N.A., and Serova, A.E., The Role of Rydberg Atoms and Molecules in the Upper Atmosphere, Geomagn. Aeron., 1997, vol. 37, no. 3, pp. 331–335.

    Google Scholar 

  • Bates, D.R., Electronion Recombination in an Ambient Molecular Gas, J. Phys. B, 1981, vol. 14, no. 18, pp. 3525–3534.

    Article  Google Scholar 

  • Benestad, R.E., Solar Activity and Earth’s Climate, Springer-Praxis, 2002, p. 287.

  • Bezopasnost’ Rossii. Bezopasnost’ truboprovodnogo transporta (Russia’s Security. Pipeline Transportation Security), Mazur, I.I. and Ivantsov, O.M., Ed., Moscow: MGF Znanie, 2002.

    Google Scholar 

  • Bondur, V.G., Pulinets, S.A., and Kim, G.A., Role of Variations in Galactic Cosmic Rays in Tropical Cyclogenesis: Evidence of Hurricane Katrina, Dokl. Earth Sci., 2008a, vol. 422, no. 7, pp. 1124–1128.

    Article  Google Scholar 

  • Bondur, V.G., Pulinets, S.A., and Uzunov, D., The Impact of Large-Scale Atmospheric Vortex Processes in the Ionosphere: A Case Study of Hurricane Katrina, Issled. Zemli Kosmosa, 2008b, no. 6, pp. 3–11.

  • Calder, N., The Carbon Dioxide Thermometer and the Cause of Global Warming, Energy Environ., 1999, vol. 10, no. 1, pp. 1–7.

    Article  Google Scholar 

  • Carslaw, K.S., Harrison, R.G., and Kirkby, J., Cosmic Rays, Clouds, and Climate, Science, 2002, vol. 298, pp. 1732–1736. doi: 10.1126/sciece.1076964.

    Article  Google Scholar 

  • Chilingaryan, S., Chilingarian, A., Danielyan, V., and Eppler, W., The Aragats Data Acquisition System for Highly Distributed Particle Detecting Networks, J. Physics: Conf. Ser, 2008, vol. 119, no. 08, p. 9. doi: 10.1088/1742-6596/119/8/082001.

    Article  Google Scholar 

  • Dergachev, V.A. and Raspopov, O.M., Long-Term Processes on the Sun Controlling Trends in the Solar Irradiance and the Earth’s Surface Temperature, Geomagn. Aeron., 2000, vol. 40, no. 3, pp. 279–283.

    Google Scholar 

  • Detemmerman, V., World Climate Research Programme. WCRP Strategic Framework for 2005–2015, Paris: WMO, 2005.

    Google Scholar 

  • Dmitriev, A.A. and Lomakina, T.Yu., Clouds and X-Ray Emission of Space, in Effekty solnechnoi aktivnosti v nizhnei atmosfere (The Effects of Solar Activity in the Lower Atmosphere), Rakipova, L.R., Ed., Leningrad: Gidrometeoizdat, 1977.

    Google Scholar 

  • Feister, U., Junk, J., and Woldt, M., Long-Term Solar UV Radiation Reconstructed by Artificial Neural Networks (ANN), Atmos. Chem. Phys. Discuss., 2008, vol. 8, pp. 453–488.

    Article  Google Scholar 

  • GOST ISO 9.602-2005. Edinaya sistema zashchity ot korrozii i stareniya. Sooruzheniya podzemnye. Obshchie trebovaniya k zashchite ot korrozii (Unified System for Corrosion and Aging Protection. Underground Constructions. General Requirements for Corrosion Protection), Moscow: Standartinform, 2006.

  • GOST R 51164-98. Truboprovody stal’nye magistral’nye. Obshchie trebovaniya k zashchite ot korrozii (Steel Trunk Pipelines. General Requirements for Corrosion Protection), Moscow: Gosstandart Rossii, 1998.

  • Gummow, R.A., Eng. P. GIC Effects on Pipeline Corrosion and Corrosion-Control Systems, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, no. 16, pp. 1755–1764.

    Article  Google Scholar 

  • Harrison, R.G. and Stephenson, D.B., Empirical Evidence for a Nonlinear Effect of Galactic Cosmic Rays on Clouds, Proc. R. Soc. London, Ser. A, 2005, vol. 462, pp. 1221–1233. doi: 10.1098/rspa.2005.1628.

    Google Scholar 

  • Ivanov, K.G., Correlation between Tropical Cyclones and Magnetic Storms during Cycle 23 of Solar Activity, Geomagn. Aeron., 2007, vol. 47, no. 3, pp. 271–374.

    Google Scholar 

  • de Jager, C., Versteegh, G.J.M., and van Dorland, R., Climate Change Scientific Assessment and Policy Analysis. Scientific Assessment of Solar Induced Climate Change, Rep. 500102001.

  • Kanaikin, V.A. and Matvienko, A.F., Razrusheniya trub magistral’nykh truboprovodov: sovremennoe predstavlenie o korrozionnom rastreskivanii pod napryazheniem (Destruction of Pipes of Trank Pipelines: The Modern Ideas of Corrosion-Induced Cracking under Stress), Yekaterinburg: BIK, 1990.

    Google Scholar 

  • Kirkby, J. and Laaksonen, A., Solar Variability and Clouds, Space Sci. Rev., 2000, vol. 94, nos 1/2, pp. 397–403.

    Article  Google Scholar 

  • Kondrat’ev, K.Ya. and Ivlev, L.S., Klimatologiya aerozolei i oblachnosti (Climatology of Aerosols and Cloudsness), St. Petersburg: Izd. VVM, 2008.

    Google Scholar 

  • Kondrat’ev, K.Ya. and Nikol’skii, G.A., Solar Activity and Climate. 1. Observational Data. Condensation and Ozone Hypotheses, Issled. Zemli Kosmosa, 1995a, no. 5, pp. 3–17.

  • Kondrat’ev, K.Ya. and Nikol’skii, G.A., Solar Activity and Climate. 2. The Direct Impact of Changes in Extra-Atmospheric Spectral Distribution of Solar Radiation, Issled. Zemli Kosmosa, 1995b, no. 6, pp. 3–20.

  • Kondrat’ev, K.Ya., Krapivin, V.F., and Savinykh, V.P., Perspektivy razvitiya tsivilizatsii. Mnogomernyi analiz (Prospects for the Development of Civilization. Multivariate Analysis), Moscow: Logos, 2003.

    Google Scholar 

  • Krasovskii, V.I., Shtili i shtormy v verkhnei atmosfere (Calm Weather and Storms in the Upper Atmosphere), Moscow: Nauka, 1971.

    Google Scholar 

  • Krauklis, V.L., Nikol’skii, G.A., Safronova, M.M., and Shul’ts, E.O., On the Conditions of Anomalous Features of Aerosol Attenuation of Ultraviolet Radiation at High Atmospheric Transparency, Opt. Atmos., 1990, vol. 3, no. 3, pp. 227–241.

    Google Scholar 

  • Kristjansson, J. and Kristiansen, J., Is there a Cosmic Ray Signal in Recent Variations in Global Cloudiness and Cloud Radiative Forcing?, J. Geophys. Res., 2000, vol. 105, pp. 11851–11863.

    Article  Google Scholar 

  • Kristjansson, J.E., Kristiansen, J., and Kaas, E., Solar Activity, Cosmic Rays, Clouds and Climate-An Update, Adv. Space Res., 2004, vol. 34, no. 2, pp. 407–415.

    Article  Google Scholar 

  • Krivova, N.A., Balmaceda, L., and Solanki, S.K., Reconstruction of Solar Total Irradiance Since 1700 from the Surface Magnetic Flux, Astron. Astrophys., 2007, vol. 467, pp. 335–346. doi: 10.1051/0004-6361:20066725.

    Article  Google Scholar 

  • Lazarev, A.I., Kovalenok, V.V., and Cavinykh, V.P., Vizual’no-instrumental’nye nablyudeniya s “Salyuta-6” (Visual and Instrumental Observations from Salyut-6), Leningrad: Gidrometeoizdat, 1983.

    Google Scholar 

  • Lazarev, A.I., Kovalenok, V.V., and Avakyan, S.V., Issledovanie Zemli s pilotiruemykh kosmicheskikh korablei (Study of Earth from Manned Spacecraft), Leningrad: Gidrometeoizdat, 1987.

    Google Scholar 

  • Lean, J., The Sun’s Variable Radiation and Its Relevance for Earth, Ann. Rev. Astr. Astroph., 1997, vol. 35, pp. 33–67.

    Article  Google Scholar 

  • Lean, J., Living with a Variable Sun, Phys. Today, 2005, June, pp. 32–38.

  • Lockwood, M. and Frohlich, C., Recent Oppositely Directed Trends in Solar Climate Forcings and the Global Mean Surface Air Temperature, Proc. R. Soc. London, Ser. A, 2007. doi: 10.1098/r5sspa.2007.1880.

  • Marsh, N. and Svensmark, H., Cosmic Rays, Clouds, and Climate, Space Sci. Rev., 2000, vol. 94, nos. 1/2, pp. 215–230.

    Article  Google Scholar 

  • Mende, W. and Stellmacher, R., Solar Variability and the Search for Corresponding Climate Signals, Space Sci. Rev., 2000, vol. 94, nos. 1/2, pp. 295–306.

    Article  Google Scholar 

  • Mullayarov, V.A., Kozlov, V.I., Grigor’ev, Yu.M., and Romashchenko, Yu.A., Current Induced in a Gas Pipeline by the Large Magnetic Disturbance on January 21, 2005, Nauka Obrazov., 2006, vol. 1, no. 41, pp. 53–55.

    Google Scholar 

  • Nagovitsyn, Yu.A., Solar and Geomagnetic Activity on a Large Timeline: Reconstruction and the Possibility to Forecast, Pis’ma Astron. Zh., 2006, vol. 32, no. 5, pp. 382–391.

    Google Scholar 

  • Nikol’skii, G.A. and Shul’ts, E.O., Spectral and Temporal Variations of the Residual Attenuation in the Near Ultraviolet, Opt. Atmos., 1991, vol. 4, no. 9, pp. 961–966.

    Google Scholar 

  • Nusinov, A.A., The Ionosphere as a Natural Detector for Studying Long-Period Variations in the Fluxes of Solar Geoeffective Radiation, Geomagn. Aeron., 2004, vol. 44, no. 6, pp. 718–725.

    Google Scholar 

  • Ogurtsov, M.G., Secular Variation in Aerosol Transparency of the Atmosphere as the Possible Link between Long-Term Variations in Solar Activity and Climate, Geomagn. Aeron., 2007, vol. 47, no. 1, pp. 118–128.

    Article  Google Scholar 

  • Palle, E., Goode, P.R., Montanes-Rodriguez, P., and Koonin, S.E., Changes in Earth’s Reflectance over the Past Two Decades, Science, 2004, vol. 304, pp. 1299–1301.

    Article  Google Scholar 

  • Palle, E., Goode, P.R., Montanes-Rodriguez, P., and Koonin, S.E., Can the Earth’s Albedo and Surface Temperatures Increase Together?, EOS, 2006, vol. 87, no. 4, pp. 37–43.

    Article  Google Scholar 

  • Petrov, L.N., Korroziya pod napryazheniem (Corrosion under Stress), Kiev: Vishcha shkola, 1986.

    Google Scholar 

  • Pirjola, R., Calculation of Geomagnetically Induced Currents (GIC) in Ground-Based Technological Systems, in COST 724 Final Report. Developing the Scientific Basis for Monitoring, Modeling and Predicting Space Weather, Lilensten, J., Belehaki, A., Messerotti, M., Vainio, R., Watermann, J., and Poedt. S., Eds., 2008. P. 286–289.

  • Pulkkinen, T.I., Nevanlinna, H., Pulkkinen, P.J., and Lockwood, M., The Sun-Earth Connection in Time Scales from Years to Decades and Centuries, Space Sci. Rev., 2001, vol. 95, nos. 1/2, pp. 625–637.

    Article  Google Scholar 

  • Rodgers, D.J., Murphy, L.M., and Dyer, C.S., Benefits of a European Space Weather Programme, 2000, ESWPSDER-TN-0001, V. 2.1.

  • Rokityanskii, Ya.G., Crucial Oil and Gas Industry Puzzles, Vestn. Ross. Akad. Nauk, 2008, vol. 78, no. 8, pp. 704–711.

    Google Scholar 

  • Scafetta, N. and Willson, R., ACRIM-Gap and Total Solar Irradiance (TSI) Trend Issue Resolved Using a Surface Magnetic Flux TSI Proxy Model, Geophys. Res. Lett., 2009, vol. 36, no. L05701. doi: 10.1029/2008GL036307.

  • S.E.C. User Notes, 2000, no. 28.

  • Sokolov, S.N., Relationship between Changes in Electron Density in the Midlatitude Lower Ionosphere and the Intensity of the Ring Current, Geomagn. Aeron., 1987, vol. 27, no. 3, pp. 388–392.

    Google Scholar 

  • Sokolovskii, V.V., The Circulatory System of the Russian Economy, Gazovyi Biznes, 2009, nos. 28–29, pp. 68–69.

  • Steinhilber, F., Beer, J., and Frohlich, C., Total Solar Irradiance during the Holocene, Geophys. Res. Lett., 2009, vol. 36, no. L19704. doi: 10.1029/2009GL040142.

  • Stozhkov, Yu.I., Svirzhevsky, N.S., Bazilevskaya, G.A., Kvashnin, A.N., Makhmutov, V.S., and Svirzhevskaya, A.K., Long-Term (50 Years) Measurements of Cosmic Ray Fluxes in the Atmosphere, Adv. Space Res., 2008, vol. 42, no. 1, pp. 978–985.

    Google Scholar 

  • Svensmark, H., Cosmoclimatology: a New Theory Emerges, Astron. Geophys., 2007, vol. 48, no. 1, pp. 18–24.

    Article  Google Scholar 

  • Svensmark, H., Pedersen, J.O.P., Marsh, N.D., and Enghoff, M.B., Experimental Evidence for the Role of Ions in Particle Nucleation under Atmospheric Conditions, Proc. R. Soc. A, 2007, vol. 463, pp. 385–396. doi: 10.1098/rspa.2006.1773.

    Article  Google Scholar 

  • Troitskii, V.S., Starodubtsev, A.M., Bondar’, L.N., et al., The Search for Sporadic Radio Emission from Space at Centimeter and Decimeter Wavelengths, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1973, vol. 16, no. 3, pp. 323–341.

    Google Scholar 

  • Tsushima, Y., Emori, S., Ogura, T., Kimoto, M., Webb, M.J., Williams, K.D., Ringer, M.A., Soden, B.J., Li, B., and Andronova, N., Importance of the Mixed-Phase Cloud Distribution in the Control Climate for Assessing the Response of Clouds to Carbon Dioxide Increase-A Multi-Model Study, Clim. Dynamics, 2006, vol. 27, pp. 113–126.

    Article  Google Scholar 

  • Usoskin, I.G. and Kovaltsov, G.A., Cosmic Rays and Climate of the Earth: Possible Connection, C.R. Geosci., 2008, vol. 340, pp. 441–450.

    Article  Google Scholar 

  • Varfolomeeva, L., Information Technology in the Service of Oil and Gas Industry in Russia, Neft’ Rossii, 2004, no. 9, pp. 24–25.

  • Veretenenko, S.V. and Pudovkin, M.I., Variations of Total Cloudiness during Solar Cosmic Ray Events, Geomagn. Aeron., 1996, vol. 36, no. 1, pp. 108–111.

    Google Scholar 

  • Veretenenko, S.V., Dergachev, I.F., and Dmitriev, P.B., Solar Activity and Cosmic Ray Variations as a Factor of Intensity of Cyclonic Processes at Midlatitudes, Geomagn. Aeron., 2007, vol. 47, no. 3, pp. 375–382.

    Article  Google Scholar 

  • Willson, R. and Mordvinov, A., Secular Solar Irradiance Trend during Solar Cycles 21–23, Geophys. Res. Lett., 2003, vol. 30. doi: 10.1029/2002GL016038

  • Woods, T.N., Eparvier, F.G., Bailey, S.M., et al., Solar EUV Experiment (SEE): Mission Overview and First Results, J. Geophys. Res., 2005, vol. 110, no. A01312. doi: 10.1029/2004JA010765.

  • Yu, F. and Turco, R.P., From Molecular Clusters to Nanoparticles: Role of Ambient Ionization in Tropospheric Aerosol Formation, J. Geophys. Res., 2001, vol. 106, no. D5, pp. 4797–4814.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Avakyan.

Additional information

Original Russian Text © S.V. Avakyan, N.A. Voronin, 2011, published in Issledovanie Zemli iz Kosmosa, 2011, No. 3, pp. 14–29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avakyan, S.V., Voronin, N.A. The role of cosmic and ionospheric disturbances in global climatic changes and pipeline corrosion. Izv. Atmos. Ocean. Phys. 47, 1143–1158 (2011). https://doi.org/10.1134/S0001433811090027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433811090027

Keywords

Navigation