Skip to main content
Log in

Redoubled effect of a neutron spin rotation in deformed noncentrosymmetric crystal for the Bragg diffraction scheme

  • Fields, Particles, and Nuclei
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

A doubled effect of a neutron spin rotation in a noncentrosymmetric quartz crystal for the Bragg reflected neutrons from the deformed exit crystal side is first observed. The effect arises due to a neutron Schwinger interaction with the crystal and depends on the value of the crystal deformation near its back exit face. The electric field acting on a neutron in the quartz crystal is about ∼108 V/cm. This field affects the neutron during the whole time of its passage through the crystal, both there and back. This time is limited only by the available size of the crystal (14 and 27 cm in our case) or the neutron absorption length. Observation of such effects gives a real perspective on the essential improvement of the scheme and sensitivity of the experiment in the search for a neutron electric dipole moment (EDM) by the crystal-diffraction technique. Moreover, the presented experimental scheme can be applied for a neutron with an energy close to the P wave resonance to search for the T-odd part of a neutron-nuclei interaction, for example, because of relatively low requirements of crystal quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Fedorov, V. V. Voronin, E. G. Lapin, and O. I. Sumbaev, Preprint No. PNPI-1944 (Inst. of Nuclear Physics, Russian Academy of Sciences, Gatchina, 1994); Tech. Phys. Lett. 21, 884 (1995); Physica B (Amsterdam) 234–236, 8 (1997).

  2. V. V. Fedorov, V. V. Voronin, and E. G. Lapin, Preprint No. LNPI-1644 (Inst. of Nuclear Physics, USSR Academy of Sciences, Leningrad, 1990); J. Phys. G: Nucl. Part. Phys. 18, 1133 (1992).

  3. V. V. Fedorov, E. G. Lapin, S. Yu. Semenikhin, and V. V. Voronin, Physica B (Amsterdam) 297, 293 (2001).

    ADS  Google Scholar 

  4. V. V. Fedorov and V. V. Voronin, Nucl. Instrum. Methods Phys. Res. B 201, 230 (2003).

    Article  ADS  Google Scholar 

  5. V. L. Alexeev, V. V. Fedorov, E. G. Lapin, et al., Nucl. Instrum. Methods Phys. Res. A 284, 181 (1989); Sov. Phys. JETP 69, 1083 (1989).

    Article  ADS  Google Scholar 

  6. V. V. Voronin, E. G. Lapin, S. Yu. Semenikhin, and V. V. Fedorov, Preprint No. PNPI-2376 (Inst. of Nuclear Physics, Russian Academy of Sciences, Gatchina, 2000); JETP Lett. 72, 308 (2000).

  7. V. V. Voronin, E. G. Lapin, S. Yu. Semenikhin, and V. V. Fedorov, JETP Lett. 71, 76 (2000); Preprint No. PNPI-2337 (Inst. of Nuclear Physics, Russian Academy of Sciences, Gatchina, 2000).

    Article  ADS  Google Scholar 

  8. M. Forte, J. Phys. G: Nucl. Phys. 9, 745 (1983).

    Article  ADS  Google Scholar 

  9. V. G. Baryshevskii and S. V. Cherepitsa, Phys. Status Solidi B 128, 379 (1985).

    Google Scholar 

  10. V. V. Fedorov et al., ILL Experimental Report, Test-731 (2002).

  11. M. Forte and C. M. E. Zeyen, Nucl. Instrum. Methods Phys. Res. A 284, 147 (1989).

    Article  ADS  Google Scholar 

  12. V. V. Fedorov, in Proceedings of XXVI Winter LNPI School (Leningrad, 1991), Vol. 1.

  13. V. V. Voronin, E. G. Lapin, S. Yu. Semenikhin, and V. V. Fedorov, JETP Lett. 74, 251 (2001).

    Article  ADS  Google Scholar 

  14. C. G. Shull and R. Nathans, Phys. Rev. Lett. 19, 384 (1967).

    Article  ADS  Google Scholar 

  15. V. G. Baryshevsky, J. Phys. G: Nucl. Part. Phys. 23, 509 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 80, No. 9, 2004, pp. 675–679.

Original English Text Copyright © 2004 by Fedorov, Kuznetsov, Lapin, Semenikhin, Voronin.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, V.V., Kuznetsov, I.A., Lapin, E.G. et al. Redoubled effect of a neutron spin rotation in deformed noncentrosymmetric crystal for the Bragg diffraction scheme. Jetp Lett. 80, 575–579 (2004). https://doi.org/10.1134/1.1851637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1851637

PACS numbers

Navigation