Skip to main content
Log in

Equilibrium of rotating and nonrotating plasmas in tokamaks

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The equilibrium of a tokamak plasma with a toroidal flow is discussed. It is shown that the centrifugal force of this rotation always reduces the equilibrium beta limit. An opposite view is analyzed, and the arguments supporting this view are considered. It is shown that, although the equilibrium conditions may be locally improved through a special choice of the profile of the plasma rotation velocity, toroidal rotation, on the whole, has a negative effect on the plasma equilibrium. However, under typical tokamak conditions, a decrease in the equilibrium β limit due to plasma rotation is insignificant and, consequently, the effect of the rotation of a hot plasma on its equilibrium can be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Artsimovich and K. B. Kartashev, Dokl. Akad. Nauk SSSR 146, 1305 (1962) [Sov. Phys. Dokl. 7, 919 (1963)].

    Google Scholar 

  2. V. D. Shafranov, At. Energ. 13, 521 (1962).

    Google Scholar 

  3. V. D. Shafranov, Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1966), Vol. 2.

    Google Scholar 

  4. V. S. Mukhovatov and V. D. Shafranov, Nucl. Fusion 11, 605 (1971).

    Google Scholar 

  5. L. A. Artsimovich, Closed Plasma Configurations (Nauka, Moscow, 1969).

    Google Scholar 

  6. L. A. Artsimovich, Nucl. Fusion 12, 215 (1972).

    Google Scholar 

  7. V. S. Mukhovatov, Itogi Nauki Tekh., Ser. Fiz. Plazmy, Ed. by V. D. Shafranov (VINITI, Moscow, 1980), Vol. 1, Part 1, p. 6.

    Google Scholar 

  8. H. P. Zehrfeld and B. J. Green, Nucl. Fusion 12, 569 (1972).

    Google Scholar 

  9. H. P. Zehrfeld and B. J. Green, Nucl. Fusion 13, 750 (1973).

    Google Scholar 

  10. S. Suckewer, H. P. Eubank, R. J. Goldston, et al., Nucl. Fusion 21, 1301 (1981).

    Google Scholar 

  11. K. Brau, M. Bitter, R. J. Goldston, et al., Nucl. Fusion 23, 1643 (1983).

    Google Scholar 

  12. R. C. Isler, Nucl. Fusion 24, 1599 (1984).

    Google Scholar 

  13. E. K. Maschke and H. Perrin, Plasma Phys. 22, 579 (1980).

    Article  ADS  Google Scholar 

  14. W. A. Cooper and A. J. Wootton, Plasma Phys. 24, 1183 (1982).

    ADS  Google Scholar 

  15. E. Hameiri, Phys. Rev. A 27, 1259 (1983).

    Article  ADS  Google Scholar 

  16. E. Hameiri, Phys. Fluids 26, 230 (1983).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. L. L. Lao, Comput. Phys. Commun. 31, 201 (1984).

    ADS  Google Scholar 

  18. W. Kerner and H. Weitzner, Comput. Phys. Commun. 31, 249 (1984).

    ADS  Google Scholar 

  19. W. Kerner and O. Jandl, Comput. Phys. Commun. 31, 269 (1984).

    ADS  Google Scholar 

  20. S. Semenzato, R. Gruber, and H. P. Zehrfeld, Comput. Phys. Rep. 1, 389 (1984).

    Article  ADS  Google Scholar 

  21. R. A. Clemente and R. Farengo, Phys. Fluids 27, 776 (1984).

    ADS  MATH  Google Scholar 

  22. W. A. Cooper, Plasma Phys. Controlled Fusion 26, 1351 (1984).

    ADS  Google Scholar 

  23. Y. Z. Agim and J. A. Tataronis, J. Plasma Phys. 34, 337 (1985).

    ADS  Google Scholar 

  24. K. Elsässer and A. Z. Heimsoth, Z. Naturforsch. A 41, 883 (1986).

    MathSciNet  ADS  Google Scholar 

  25. W. Kerner and S. Tokuda, Z. Naturforsch. A 42, 1154 (1987).

    Google Scholar 

  26. A. Bhattacharjee, in Theory of Fusion Plasmas (Proceedings of the International School of Plasma Physics “Piero Caldirola,” Varenna, 1987), Ed. by A. Bondeson, E. Sindoni, and F. Troyon (Compositori, Bologna, 1988), p. 47.

    Google Scholar 

  27. J. W. Connor, S. C. Cowley, R. J. Hastie, and L. R. Pan, Plasma Phys. Controlled Fusion 29, 919 (1987).

    Article  ADS  Google Scholar 

  28. W. A. Cooper and S. P. Hirshman, Plasma Phys. Controlled Fusion 29, 933 (1987).

    Article  ADS  Google Scholar 

  29. T. Takeda and S. Tokuda, J. Comput. Phys. 93, 1 (1991).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. G. Beitman, MHD Instabilities (MIT Press, Cambridge, 1978; Énergoizdat, Moscow, 1982).

    Google Scholar 

  31. L. E. Zakharov and V. D. Shafranov, Reviews of Plasma Physics, Ed. by M. A. Leontovich and B. B. Kadomtsev (Énergoizdat, Moscow, 1982; Consultants Bureau, New York, 1986), Vol. 11.

    Google Scholar 

  32. V. D. Pustovitov and V. D. Shafranov, Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Énergoatomizdat, Moscow, 1987; Consultants Bureau, New York, 1990), Vol. 15.

    Google Scholar 

  33. B. J. Braams, Plasma Phys. Controlled Fusion 33, 715 (1991).

    Article  ADS  Google Scholar 

  34. V. D. Pustovitov, Reviews of Plasma Physics, Ed. by B. B. Kadomtsev and V. D. Shafranov (Consultants Bureau, New York, 2000), Vol. 21, p. 1.

    Google Scholar 

  35. V. I. Ilgisonis and Yu. I. Pozdnyakov, Pis'ma Zh. Éksp. Teor. Fiz. 71, 454 (2000) [JETP Lett. 71, 314 (2000)].

    Google Scholar 

  36. V. I. Ilgisonis, Plasma Phys. Controlled Fusion 43, 1255 (2001).

    Article  ADS  Google Scholar 

  37. R. Zelazny and A. Gałkowski, J. Plasma Phys. 50, 385 (1993).

    Article  ADS  Google Scholar 

  38. R. Zelazny, R. Stankiewicz, A. Gałkowski, and S. Potempski, Plasma Phys. Controlled Fusion 35, 1285 (1993).

    Article  Google Scholar 

  39. H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas 5, 2378 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  40. Ch. Simintzis, G. N. Throumoulopoulos, and G. Pantis, Phys. Plasmas 8, 2641 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  41. A. M. Garofalo, A. D. Turnbull, M. E. Austin, et al., Phys. Rev. Lett. 82, 3811 (1999).

    Article  ADS  Google Scholar 

  42. D. Testa, C. Giroud, A. Fasoli, et al., Phys. Plasmas 9, 243 (2002).

    Article  ADS  Google Scholar 

  43. J. M. Greene, J. L. Johnson, and K. E. Weimer, Phys. Fluids 14, 671 (1971).

    ADS  Google Scholar 

  44. M. S. Chu, L. Chen, L.-J. Zheng, et al., Nucl. Fusion 39, 2107 (1999).

    Article  ADS  Google Scholar 

  45. M. Furukawa, Y. Nakamura, S. Hamaguchi, and M. Wakatani, Phys. Plasmas 8, 4889 (2001).

    Article  ADS  Google Scholar 

  46. A. Bondeson, C. G. Gimblet, and R. J. Hastie, Phys. Plasmas 6, 637 (1999).

    Article  ADS  Google Scholar 

  47. A. M. Garofalo, E. J. Strait, J. M. Bialek, et al., Nucl. Fusion 40, 1491 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 29, No. 2, 2003, pp. 124–130.

Original Russian Text Copyright © 2003 by Pustovitov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustovitov, V.D. Equilibrium of rotating and nonrotating plasmas in tokamaks. Plasma Phys. Rep. 29, 105–111 (2003). https://doi.org/10.1134/1.1545585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1545585

Keywords

Navigation