Skip to main content
Log in

Strapdown inertial navigation systems based on fiber-optic gyroscopes

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

Strapdown inertial navigation systems (SINS) are basic parts of modern integrated navigation systems in various vehicles. Currently, fiber-optic gyroscopes (FOGs) with closed-loop feedback are finding increasing use for inertial navigation systems. The paper presents SINS-500K, SINS-500M and SINS-501 developed and produced by the Russian Research & Production Company Optolink with Optolink FOGs. The test results are discussed. Optolink FOGs and SINS’s are compared with similar devices of world leading manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Titterton, D. and Weston, J., Strapdown Inertial Navigation Technology, Institution of Engineering and Technology, 2005.

    Google Scholar 

  2. Lawrence, A., Modern Inertial Technology: Navigation, Guidance, and Control, Springer, 2012.

    Google Scholar 

  3. Chatfield, A.B., Fundamentals of High Accuracy Inertial Navigation, AIAA, 1997.

    Book  Google Scholar 

  4. Noureldin, A., Karamat, T.B., and Georgy, J., Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration, Springer, 2013.

    Book  Google Scholar 

  5. Anuchin, O.N. and Emel’yantsev, G.I., Integrirovannye sistemy orientatsii i navigatsii (BINS i BISO) (Integrated systems of Orientation and Navigation), Peshekhonov, V.G., Ed., St. Petersburg: TsNII Elektropribor, 1999.

  6. Matveev, V.V. and Raspopov, V.Ya., Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh sistem (Design Fundamentals of Strapdown Inertial Navigation Systems), St. Petersburg: TsNII Elektropribor, 2009.

    Google Scholar 

  7. Sokolov, S.V. and Pogorelov, V.A., Osnovy sinteza mnogostrukturnykh besplatformennykh inertsial’nykh navigatsionnykh sistem (Synthesis Basics of Multistructural Strapdown Inertial Navigation Systems), Moscow: Fizmatlit, 2009.

    Google Scholar 

  8. Meleshko, V.V. and Nesterenko O.I., Besplatformennye inertsial’nye navigatsionnye sistemy (Strapdown Inertial Navigation Systems), Kirovograd: Polimed-Servis, 2011.

    Google Scholar 

  9. Barbour, N. and Schmidt, G., Inertial sensor technology trends, Giroskopiya i Navigatsiya, 2000, no. 1, pp. 3–13.

    Google Scholar 

  10. Peshekhonov, V.G., Gyroscopic navigation systems: Current status and prospects, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 11–118.

    Article  Google Scholar 

  11. Lefevre H., The Fiber-Optic Gyroscope, Artech House, 1993.

    Google Scholar 

  12. Optical Fiber Rotation Sensing, Burns, W.K., Ed., Academic Press, 1994.

    Google Scholar 

  13. Velikosel’tsev, A.A. and Filatov, Yu., V., Volokonnoopticheskie tekhnologii v navigatsionnykh sistemakh: Uchebnoe posobie (Fiber-Optic Technologies in Navigation Systems: Tutorial), St. Petersburg: Izd. SPb-GETU LETI, 2011.

    Google Scholar 

  14. Luk’yanov, D.P., Laser and fiber-optic gyroscopes: Current status and prospects, Giroskopiya i Navigatsiya, 1998, no. 4, pp. 20–45.

    Google Scholar 

  15. Lefevre, H.C., The fiber-optic gyroscope: Achievement and perspective, Gyroscopy and Navigation, 2012, no. 4, pp. 223–226.

    Google Scholar 

  16. http://www.ixblue.com/business/area/inertial-products

  17. http://www.northropgrumman.com/Capabilities/NavigationSystems/Pages/default.aspx, J.M. Strus, M. Kirkpatrick, J. Sinko. GPS/IMU development of a high accuracy pointing system for maneuvering platforms // Inside GNSS, 2008. N3, p.30–37.

  18. http://www.honeywell.com/sites/aero/Inertial_Navigation_Products

  19. http://www.kvh.com/Military-and-Government/Gyros-and-Inertial-Systems-and-Compasses.aspx

  20. Logozinskii V., Safutin I., and Solomatin, V., A fiber-optic rotation sensor with corrected digital output, Giroskopiya i Navigatsiya, 2002, no. 3, pp. 93–102.

    Google Scholar 

  21. Kolevatov, A.P., Nikolaev, S.G., Andreev, A.G., Ermakov, V.S., Kel’, O.L., and Shevtsov D.I., Fiber-optic gyroscope of navigation-grade strapdown inertial systems. Development, temperature compensation, and tests, Giroskopiya i Navigatsiya, 2010, no. 3, pp. 49–60.

    Google Scholar 

  22. Meshkovskii, I.K., Strigalev V.E., Deineka, G.B., Peshekhonov, V.G., and Nesenyuk L.P., Three-axis fiber-optic gyroscope for marine navigation systems, Giroskopiya i Navigatsiya, 2009, no. 3, pp. 3–9.

    Google Scholar 

  23. Meshkovskii, I.K., Strigalev V.E., Deineka, G.B., Peshekhonov, V.G., Volynskii, D.B., and Untiliv, A.A., Three-axis fiber-optic gyroscope. The results of the development and preliminary tests, Giroskopiya i Navigatsiya, 2011, no. 3, pp. 67–74.

    Google Scholar 

  24. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Fenyuk, M.A., Marchuk, V.G., Kostritskii, S.M., and Paderin, E.M., High-precision fiber-optic gyroscope with a linear digital output, Giroskopiya i Navigatsiya, 2004, no. 1, pp. 69–82.

    Google Scholar 

  25. Prilutskii, V.E., Ponomarev, V.G., Marchuk, V.G, Fenyuk, M.A., Korkishko, Yu.N., Fedorov, V.A., Kostritskii, S.M., Kostritskii, S.M., Paderin, E.M., and Zuev A.I., Interferometric fiber-optic gyroscopes with a linear digital output, Giroskopiya i Navigatsiya, 2004, no. 3, pp. 62–72.

    Google Scholar 

  26. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Marchuk, V.G., Morev, I.V., Paderin, E.M., Kostritskii, S.M., Branets, V.N., and Ryzhkov, V.S., Space-grade three-axis fiber-optical gyroscope, Proc. EOS Topical Meeting on Photonic Devices in Space, October 18–19, 2006, Paris, France, vol.5, pp. 32–35.

    Google Scholar 

  27. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Morev, I.V., Marchuk, V.G, Kostritskii, S.M., and Paderin, E.M., Interferometric fiber-optic gyroscopes, Foton-Ekspress, 2007, 6(62), pp. 47–49.

    Google Scholar 

  28. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Marchuk, V.G., Morev, I.V., Paderin, E.M., Kostritskii, S.M., Paderin, Nesenyuk, L.P., Buravlev, A.S., and Lisin, L.G., Navigation-grade fiber-optical gyroscope, Giroskopiya i Navigatsiya, 2008, no. 1, pp.71–81.

    Google Scholar 

  29. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Morev, I.V., and Kostritskii, S.M., Interferometric closed-loop fiber-optic gyroscopes, Proc. SPIE, vol. 8351, Third Asia Pacific Optical Sensors Conference, John Canning, Gangding Peng, Eds., (SPIE, Bellingham, WA, 2012), 83513L, pp. 83513L-1–83513L-8 (2012).

    Google Scholar 

  30. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Morev, I.V., Kostritskii, S.M., Zuev, A.I., and Varnakov, V.K., Closed-loop fiber-optical gyroscopes for commercial and space applications, Proc. Inertial Sensors and Systems, Symposium Gyro Technology 2012, Karlsruhe, Germany, 18–19 September 2012, pp. 14.1–14.15.

    Google Scholar 

  31. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Morev, I.V., Kostritskii, S.M., Zuev, A.I., and Varnakov, V.K., Interferometric closed-loop fiber-optical gyroscopes for commercial and space applications, Proc. SPIE, vol. 8421, OFS2012 22nd Int. Conf. on Optical Fiber Sensors, Yanbiao Liao, Wei Jin, David D. Sampson, Ryozo Yamauchi, Youngjo Chung, Kentaro Nakamura, Yunjiang Rao, Eds., (SPIE, Bellingham, WA, 2012), 842107, pp. 842107-1–842107-8 (2012).

    Google Scholar 

  32. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Morev, I.V., Obuhovich, D.V., Fedorov I.V., and Krobka, N.I. Investigation and identification of noise sources of high precision fiber optic gyroscopes, 20 th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2013, pp. 59–62.

    Google Scholar 

  33. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Plotnikov, P.K., Mikheev, À.V., and Naumov, S.G., Study of SINS Work in the Conditions of the High Latitudes Taking into Account the Real Sensors Errors. 16th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2009, pp. 58–61.

    Google Scholar 

  34. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Chernodarov., A.V., Matyushkin., V.A., and Perelyaev, S.E., An object-oriented technology for the integration of navigation sensors and its implementation in the SINS-1000 strapdown inertial system built around fiber-optic gyros, 16th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2009, pp. 18–27.

    Google Scholar 

  35. Chernodarov, A.V., Patrikeev, A.P., Korkishko, Yu.N., Fedorov, V.A., and Perelyaev, S.E., Software Seminatural Development for FOG Inertial Satellite Navigation System SINS-500, Gyroscopy and Navigation, 2010, vol. 1, no. 4, pp. 330–340.

    Article  Google Scholar 

  36. Korkishko, Yu.N., Fedorov, V.A., Kostritskii, S.M., Alkaev, A.N., Paderin, E.M., Maslennikov, E.I., and Apraksin, D.V., Multifunctional integrated optical chip for fiber optical gyroscope fabricated by high temperature proton exchange, Proc. SPIE, vol. 4944, Integrated Optical Devices: Fabrication and Testing, Giancarlo C. Righini, Ed., (SPIE, Bellingham, WA, 2003), pp. 262–267.

    Google Scholar 

  37. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Morev, I.V., Kostritskii, S.M., Zuev, A.I., and Varnakov, V.K., Optimization of multi-function integrated optics chip fabricated by proton exchange in LiNbO3, Proc. SPIE, vol. 9065, Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2013, 90650E (November 28, 2013). (doi:10.1117/12.2051638).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Fedorov.

Additional information

Published in Russian in Giroskopiya i Navigatsiya, 2014, No. 1, pp. 14–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkishko, Y.N., Fedorov, V.A., Prilutskii, V.E. et al. Strapdown inertial navigation systems based on fiber-optic gyroscopes. Gyroscopy Navig. 5, 195–204 (2014). https://doi.org/10.1134/S2075108714040154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108714040154

Keywords

Navigation