Skip to main content
Log in

Gyroscopic navigation systems: Current status and prospects

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The article presents an overview of the research and development of gyroscopic technologies in Russia in the past 15 years. The current status and prospects for advancement of inertial technologies in the future are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peshekhonov, V.G., The Key Targets of Autonomous Navigation, Giroskop. Nav., 1996, no. 1, pp. 48–55.

  2. Anfinogenov, A.S., Dryapak, O.G., Parfenov, O.E., and Sumarokov, V.V., The ESG Rotor Potential at Different Structures of the Suspension, Giroskop. Nav., 2003, no. 3, pp. 37–40.

  3. Gusinsky, V.Z. and Parfenov, O.E., About One Way of Increasing the ESG Accuracy, Giroskop. Nav., 2004, no. 4, p. 67.

  4. Gusinsky, V.Z., Lesyuchevski, V.M., and Stolbov, A.A., Automated Calibration of Instrumental Errors of a Precision ESG-Based INS, Giroskop. Nav., 2000, no. 4, p. 59.

  5. Gusinsky, V.Z., Lesyuchevski, V.M., and Stolbov, A.A., Automated Calibration of the Resolvers of the Gyroscopic Unit of the Gimbaled Inertial System on Free Gyroscopes, Giroskop. Nav., 2000, no. 1, pp. 16–23.

  6. Alen’kin, E.V., Gusinsky, V.Z., Litmanovich, Yu.A., and Stolbov, A.A., A Procedure for Calibrating the Geometry Error of Gimbal Suspensions of the INS on Free Gyroscopes, Giroskop. Nav., 2004, no. 4, pp. 76–77.

  7. Gusinsky, V.Z. and Litmanovich, Yu.A., Use of Redundant Information in Attitude Determination from Two Vector Observations, Symp. Gyro Technol., 2006, Stuttgart, Germany, pp. 13.0–13.13.

  8. Gurevich, S.S., Gusinsky, V.Z., Landau, B.Ye., et al., A Spacecraft Attitude Reference System on Strapdown ESGs with a Solid Rotor, Sb. Dokl. VIII S.-Peterb. Mezhd. Konf. po Integrir. Nav. Sist., Elektropribor, 2001, pp. 52–59.

  9. Anshakov, G.P., Peshekhonov, V.G., Landau, B.Ye., and Nesenyuk, L.P., Autonomous Attitude Reference System for an Earth Remote Sensing Satellite, Tr. Mezhd. Seminara IFAC “Aerokosmicheskoe Navedenie, Navigatsiya i Sistemy Upravleniya Poletom”, Samara, 2009.

  10. Emel’yantsev, G.E., Landau, B.Ye., Levin, S.L., and Romanenko, S.G., Calibration of the Inertial Attitude Reference System on Electrostatic Gyroscopes Using the Data of a Stellar Sensor Aboard a Spacecraft, Giroskop. Nav., 2005, no. 2, pp. 69–78.

  11. Gusinsky, V.Z. and Litmanovich, Yu.A., Increasing the Spacecraft Attitude Reference Accuracy by Coprocessing the Data from Electrostatic and Fiber-Optic Gyroscopes, Giroskop. Nav., 2003, no. 4, pp. 50–58.

  12. Wesson, P.S., and Anderson, M., The Gravity Probe B Bailout, IEEE Spectrum, 02.04.2009.

  13. Everitt, C.W.F., A Superconducting Gyroscope to Test Einstein’s General Theory of Relativity, Proc. Soc. of Photo-Optical Instrumentation Engineers, 1978, pp. 175–188.

  14. Berman, Z.M., Zel’dovich, S.M., Okon, I.M., and Rivkin, S.S. Opredelenie parametrov kachki korablya s uchetom ego deformatsii (Determining the Parameters of Ship Oscillating Motion with Consideration for Its Deformations), Leningrad: Rumb, 1989.

    Google Scholar 

  15. Berman, Z.M., Kanushin, V.M., Mironov, Yu.V., Mokhov, V.P., and Sharygin, B.L., Ladoga-M Inertial Navigation and Stabilization System: the Results of the Development and Tests, Giroskop. Nav., 2002, no. 4, pp. 29–38.

  16. Blazhnov, B.A., Elinson, L.S., Nesenyuk, L.P., and Peshekhonov, V.G., Marine and Airborne Gyrostabilized Gravimeters Developed in the CSRI Elektropribor, Sb. Tr. I S.-Peterb. konf. po giroskop. tekh., Elektropribor, 1994, pp. 114–121.

  17. Binder, Ya.I., Lysenko, A.S., Paderina, T.V., and Fedorovich, A.N., Using Different Design Schemes of Gyro Inclinometers for Continuous Surveying of Differently-Oriented Wells, Giroskop. Nav., 2010, no. 4, pp. 53–72.

  18. Chikovani, V.V., Yatsenko, Yu.A., and Mekoleshen, E.T., Shock and Vibration Sensitivity Test Results for the Coriolis Vibratory Gyroscope with a Metal Resonator, Sb. Materialov XVI S.-Peterb. Mezhd. Konf. po Integrir. Nav. Sist., Elektropribor, 2009, pp. 83–88.

  19. Velikosel’tsev, A., Schreiber, U., Klügel, T., Voigt, S., and Graham, R., Sagnac Interferometry for Determination of Earth Rotation in Geodesy and Seismology, Giroskop. Nav., 2008, no. 3, pp. 37–45.

  20. Molchanov, A.V., Osetrov, E.V., and Chirkin, M.V., Quality Problems in the Laser Gyro Technology, Tr. X S.-Peterb. Mezhd. Konf. po Integrir. Nav. Sist., Elektropribor, 2003, pp. 207–209.

  21. Molchanov, A.V., Morozov, D.A., Osetrov, E.V., and Chirkin, M.V., Service Reliability of Ring Laser Gyroscopes Used in SINS, Tr. XI S.-Peterb. Mezhd. Konf. po Integrir. Nav. Sist., Elektropribor, 2004, pp. 147–149.

  22. Chirkin, M.V., Mishin, V.Yu., Molchanov, A.V., Morozov, D.A., and Zakharov, M.A., Digital Processing of RLG Signals in Estimation of the RLG Performance, Tr. XVII S.-Peterb. Mezhd. Konf. po Integrir. Nav. Sist., Elektropribor, 2010, pp. 53–55.

  23. Vinokurov, Yu.A., Golyaev, Yu.D., Dmitriev, V.G., Kolbas, Yu.Yu., Nazarenko, M.M., and Tikhmenev, N.V., A Two-Axis Zeeman Laser Gyro of Improved Accuracy, Tr. XV S.-Peterb. Mezhd. Konf. po Integrir. Nav. Sist., Elektropribor, 2008, pp. 116–120.

  24. www.fizoptika.ru

  25. Peshekhonov, V.G., Nesenyuk, L.P., et al., An Attitude and Heading Reference System on FOGs with Rotation of the IMU, Tr. VIII S.-Peterb. Mezhd. Konf. po Integrir. Nav. Sist., Elektropribor, 2001, pp. 30–34.

  26. Adamov, E.E., Uskov, A.V., and Sharygin, B.L., Ship Deformation Meter, Tr. Nauchno-Tech. Konf. NPO Agat, Moscow, 2002, p. 86.

  27. http://www.ppk.perm.ru, www.optolink.ru

  28. Kolevatov, A.P., et al., A Fiber-Optic Gyro for Strap-down Navigation-Grade INS: Development, Temperature Compensation, Tests, Giroskop. Nav., 2010, no. 3, pp. 49–60.

  29. Meshkovski, I.K., Strigalev, V.E., Deineka, B., Peshkhonov, V.G., and Nesenyuk, L.P., A Three-Axis Fiber-Optic Gyroscope for Marine Navigation Systems, Giroskop. Nav., 2009, no. 3, pp. 3–9.

  30. Dzhashitov, V.E. and Pankratov, V.M., Datchiki, pribory i sistemy aerokosmicheskogo morskogo priborostroeniya v usloviyakh teplovykh vozdeistvii (Sensors, Instruments and Systems of Aerospace and Marine Instrument Engineering in the Conditions of Thermal Effects), St. Petersburg: Elektropribor, 2005.

    Google Scholar 

  31. Zhuravlev, V.F. and Klimov, D.M., Volnovoi tverdotel’nyi giroskop (Hemispherical Resonator Gyroscope), Moscow: Nauka, 1985.

    Google Scholar 

  32. Matveev, V.A., Lipatnikov, V.I., and Alekhin, A.I., Proektirovanie volnovogo tverdotel’nogo giroskopa (Designing a Hemispherical Resonator Gyroscope), MGTU im. N.E. Baumana, 1998.

  33. Lukin, B.S., Fiziko-khimicheskie osnovy razrabotok polusfericheskikh rezonatorov volnovykh tverdotel’nykhi giroskopov (Physical and Chemical Basis for the Development of Hemispherical Resonator Gyroscopes), Moscow: Izd. MAI, 2005.

    Google Scholar 

  34. Dzhandzhava, G.I., Bakhonin, K.A., Vinogradov, G.M., and Trebukhov, A.V., A Strapdown Inertial Navigation System on a Hemispherical Resonator Gyroscope, Giroskop. Nav., 2008, no. 1, pp. 22–32.

  35. Lynch, D., Mathews, A., and Varty, G.T., Transfer of Sensor Technology from Space to Oil-Drilling Application, Giroskop. Nav., 1998, no. 1, pp. 132–141.

  36. Zhuravlev, V.F. and Lynch, D.D., The Electrical Model of the Hemispherical Resonator Gyroscope, Izv. RAN, Mekhan. Tverd. Tela, 1995, no. 5, p. 12.

  37. Barbour, N. and Schmidt, G., Inertial Sensor Technology Trends, Giroskop. Nav., 2000, no. 1, pp. 3–15.

  38. Doronin, V.P., Novikov, L.Z., and Kharlamov, S.A., The Main Problems in Creation of a Miniature Inertial Measurement Unit on MEMS Sensors, Giroskop. Nav., 1996, no. 4, p. 55.

  39. Lestev, A.M. and Popova, I.V., Current Status of the Theory and Practical Results of the MEMS Gyro Developments, Giroskop. Nav., 1998, no. 3, p. 149.

  40. Budkin, V.L., Parshin, V.A., Prozorov, S.V., Solomatin, A.K., and Solov’ev, V.M. Development of Quartz Primary Information Sensors for Navigation and Control Systems, Giroskop. Nav., 1998, no. 3, pp. 94–101.

  41. Severov, L.A., Ponomarev, V.K., Parfenov, A.I., Nesenyuk, L.P., and Kucherkov, S.G., Micromechanical Gyroscopes: A New Class of Sensors, Sb. Materialov Vserossiiskoi Nauchno-Tekh. Konf. “Pribory i Pribornye Sistemy”, Tula, 2001.

  42. Raspopov, V.Ya., Mikromekhanicheskie pribory (Micro-mechanical Devices), Tutorial, Tula: Tula State University, 2002.

    Google Scholar 

  43. Peshekhonov, V.G., Nesenyuk, L.P., Kucherkov, S.G., Evstifeev, M.I., Nekrasov, Ya.A., Renard, S., Pfluger, P., Pisella, C., and Collet, J., The Development of a Micromechanical Disc Shape Gyro, Giroskop. Nav., 2005, no. 3, pp. 44–51.

  44. Popova, I.V., Lestev, A.M., Semenov, A.A., Ivanov, V.A., Rakitenski, O.I., and Burtsev B.A., Encapsulated Micromechanical Gyros and Accelerometers for Digital Navigation and Control Systems, Sb. Materialov XV S.-Peterb. Mezhd. Konf. po Integrir. Nav. Sist., Elektropribor, 2008, pp. 37–44.

  45. Barbour, N., Connelly, J., Gilmore, J., Greff, P., Kourepenis, A., and Weinberg, M., Micro-Electrome-chanical Instrument and Systems Development at Draper Laboratory, 3rd S.-Peterb. Int. Conf. on Integrated Navigation Systems, St. Petersburg, Elektropribor, 1996, Part I, pp. 3–10.

    Google Scholar 

  46. Gai, E., Guiding Munitions with a Micromechanical INS/GPS System, Giroskop. Nav., 1998, no. 3, pp. 72–81.

  47. Chaument, B., Le-Vezzier, B., Rongeot, C., and Bouyat, S.E. A New Silicon Tuning Fork Gyroscope for Aerospace Applications, Symposium Gyro Technology, Karlsruhe Universität, 2009.

  48. Peshekhonov, V.G., Nekrasov, Ya.A., Pfluger, P., Kergueris, C., Haddara, H., and Elsayed, A., The Test Results of the RR-Type Micromechanical Gyroscope, Giroskop. Nav., 2011, no. 1, pp. 49–58.

  49. Mezentsev, A.P., Frolov, E.N., Klimkin, M.Yu., and Mezentsev, O.A., A Medium-Accuracy INS AIST-320 with a Coriolis Vibratory Gyroscope AIST-100: Ideology and the Results of the Development and Tests, Giroskop. Nav., 2007, no. 3, pp. 3–19.

  50. Blixhaven, B., Lapadatu, D., Holm, R., and Kvisterfy, T., SAR-500 — A Novel High-Precision Gyroscope, Symposium Gyro Technology., Karlsruhe, Germany, 2010.

  51. Krobka, N.I., Quantum Mechanics: Gyroscopes on de Broglie Waves and Quantum Nature of Superfluid Liquids. Development Trends and State of the Developments, Giroskop. Nav., 2009, no. 3, pp. 36–55.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Giroskopiya i Navigatsiya, 2011, No. 1, pp. 3–16.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peshekhonov, V.G. Gyroscopic navigation systems: Current status and prospects. Gyroscopy Navig. 2, 111–118 (2011). https://doi.org/10.1134/S2075108711030096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108711030096

Keywords

Navigation