Skip to main content
Log in

Modeling of aerodynamics and pollution dispersion from traffic in the urban sublayer

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A numerical microscale model of aerodynamics and the transport of pollution was developed. The model takes into account the nonhomogeneity of elements of the urban boundary layer. The numerical solution of the differential problem is based on the finite volume method. On the basis of experiments, a comparison of three different turbulent closure schemes and parameterizations of the urban vegetation was conducted. Turbulent air dynamics and the transport of pollution were modeled around an array of buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Nuterman, A. V. Starchenko, and A. A. Baklanov, “Development and Analysis of Microscale Meteorological Model for Researching the Air Mass Flows in the Urban,” Vychislit. Tekhnol. 13(3), 37–43 (2008).

    Google Scholar 

  2. P. Louka, M. Ketzel, P. Sahm, E. Guilloteau, N. Moussioroulos, J.-F. Sini, R.G. Mestauer, and R. Verkowiez, “SFD Intercomparison Exercise Within TRAROS European Research Network,” in Proc. 7th Int. Conf. on Environmental Science and Technology (Syros, 2001), Available from http://www2.dmu.dk/atmosphericenvi-ronment/Trapos/Downloads/7CEST-TRAPOS.pdf

  3. J. Ehrhard, R. Kunz, and N. Moussiopoulos, “On the Performance and Applicability of Nonlinear Two-Equation Turbulence Models for Urban Air Quality Modeling,” Environ. Monit. Assess. 65, 201–209 (2000).

    Article  Google Scholar 

  4. G. G. Katul, L. Mahrt, D. Poggy, and C. Sanz, “One- and Two-Equation Models for Canopy Turbulence,” Boundary-Layer Meteorol. 113, 81–109 (2004).

    Article  Google Scholar 

  5. J. D. Wilson and R. H. Shaw, “A Higher-Order Closure Model for Canopy Flow,” J. Appl. Meteorol. 16, 1198–1205 (1977).

    Article  Google Scholar 

  6. K. W. Ayotte, J. J. Finnigan, and M. R. Raupach, “A Second-Order Closure for Neutrally Stratified Vegetative Canopy Flows,” Boundary-Layer Meteorol. 90, 189–216 (1999).

    Article  Google Scholar 

  7. J. Katolicky and M. Jicha, “Eulerian-Lagrangian Model for Traffic Dynamics and Its Impact on Operational Ventilation of Road Tunnels,” J. Wind Eng. Industr. Aerodynam. 93, 61–77 (2005).

    Article  Google Scholar 

  8. D. Bäumer, B. Vogel, and F. Fiedler, “A New Parameterisation of Motorway-Induced Turbulence and Its Application in a Numerical Model,” Atmos. Environ. 39, No. 31, 5750–5759 (2005).

    Article  Google Scholar 

  9. E. Yee and C. A. Biltoft, “Concentration Fluctuation Measurements in a Plume Dispersing through a Regular Array of Obstacles,” Boundary-Layer Meteorol. 111, 363–415 (2004).

    Article  Google Scholar 

  10. M. W. Rotach, R. Vogt, C. Bernhofer, E. Batchvarova, A. Christen, A. Clappier, B. Feddersen, S.-E. Gryning, G. Martucci, H. Mayer, V. Mitev, T. R. Oke, E. Parlow, H. Richner, M. Roth, Y.-A. Roulet, D. Ruffieux, J.A. Salmond, M. Schatzmann, and J. A. Voogt, “BUBBLE an Urban Boundary Layer Meteorology Project,” Theor. Appl. Climatol. 81, Nos. 3–4, 231–261 (2005).

    Article  Google Scholar 

  11. L. G. Loitsyanskii, Fluid Mechanics: Student’s Book for High School, 7th ed. (Drofa, Moscow, 2003) [in Russian].

    Google Scholar 

  12. B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Comput. Meth. Appl. Mech. Eng. 3, No. 2, 269–289 (1974).

    Article  MATH  Google Scholar 

  13. T. J. Craft, B. E. Launder, and K. Suga, “Development and Application of a Cubic Eddy Viscosity Model of Turbulence,” Int. J. Heat Fluid Flow 17, 108–115 (1996).

    Article  Google Scholar 

  14. B. E. Launder, “Second-Moment Closure and Its Use in Modeling Turbulent Industrial Flows,” Int. J. Num. Meth. Fluids 9, 963–985 (1989).

    Article  MathSciNet  Google Scholar 

  15. F. S. Lien and M. A. Leschziner, “Assessment of Turbulent Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure,” Comput. Fluids 23, No. 8, 983–1004 (1994).

    Article  MATH  Google Scholar 

  16. R. Louka, Contribution of Retroula Louka to the TRAROS WG-TRT Meeting in Cambridge (2000), Available from http://www2.dmu.dk/Atmosrheris-Environment/traros/texte/louka-samb.pdf

  17. C. C. Chieng and B. E. Launder, “On the Calculation of Turbulent Heat Transport Downstream from an Abrupt Pipe Expansion,” Num. Heat Transfer 3, 189–207 (1980).

    Article  Google Scholar 

  18. S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Pub., 1980; Energoatomizdat, Moscow, 1984).

  19. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving the Convection-Diffusion Problems (Editorial URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  20. P. N. Vabishchevich, Methods of Fictitious Areas in Mathematical Physics Problems (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  21. B. Van Leer, “Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second Order Scheme,” J. Comput. Phys. 14, 361–370 (1974).

    Article  Google Scholar 

  22. V. P. Il’in, Methods of Incomplete Factorization for Solving the Algebraic Systems (Fizmatlit, Moscow, 1995) [in Russian].

    Google Scholar 

  23. Turbulent Shear Flows, Ed. by A. S. Ginevskii (Mashinostroenie, Moscow, 1982), Vol. 1.

    Google Scholar 

  24. A. Kimura, T. Iwata, A. Mochida, H. Yoshino, R. Ooka, and S. Yoshida, “Optimization of Plant Canopy Model for Reproducing Aerodynamic Effects of Trees: (Part 1) Comparison between the Canopy Model Optimized by the Present Authors and That Proposed by Green,” Summ. Tech. Pap. Ann. Meeting Architect. Inst. Jpn. 9, 721, 722 (2003).

    Google Scholar 

  25. M. Ketzel, R. Berkowiez, and A. Lohmeyer, “Comparison of Numerical Street Dispersion Models with Results from Wind Tunnel and Field Measurements,” Environ. Monit. Assess. 65, 363–370 (2000).

    Article  Google Scholar 

  26. J. Eichhorn, MISKAM-Handbuch zur Version 3.xx, (Giese-Eichhorn, Wackernheim, Oct. 1998).

    Google Scholar 

  27. R. Berkowiez, “OSPM: A Parameterized Street Pollution Model,” Environ. Monit. Assess. 65, 323–331 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Nuterman.

Additional information

Original Russian Text © R.B. Nuterman, A.A. Baklanov, A.V. Starchenko, 2010, published in Matematicheskoe Modelirovanie, 2010, Vol. 22, No. 4, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuterman, R.B., Baklanov, A.A. & Starchenko, A.V. Modeling of aerodynamics and pollution dispersion from traffic in the urban sublayer. Math Models Comput Simul 2, 738–752 (2010). https://doi.org/10.1134/S2070048210060098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048210060098

Keywords

Navigation