Skip to main content
Log in

Quantization causes waves: Smooth finitely computable functions are affine

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

Every automaton (a letter-to-letter transducer) A whose both input and output alphabets are F p = {0, 1,..., p - 1} produces a 1-Lipschitz map f A from the space Z p of p-adic integers to Z p . The map fA can naturally be plotted in a unit real square I2 ⊂ R2: To an m-letter non-empty word v = γ m-1γ m-2... γ0 there corresponds a number 0.v ∈ R with base-p expansion 0.γ m-1γ m-2... γ0; so to every m-letter input word w = α m-1α m-2 ··· α0 of A and to the respective m-letter output word a(w) = β m-1β m-2 ··· β0 of A there corresponds a point (0.w; 0.a(w)) ∈ R2. Denote P(A) a closure of the point set (0.w; 0.a(w)) where w ranges over all non-empty words.We prove that once some points of P(A) constitute a C 2-smooth curve in R2, the curve is a segment of a straight line with a rational slope. Moreover, when identifying P(A) with a subset of a 2-dimensional torus T2 ∈ R3, the smooth curves from P(A) constitute a collection of torus windings which can be ascribed to complex-valued functions ψ(x, t) = e i(Ax-2πBt) (x, t ∈ R), i.e., to matter waves. As automata are causal discrete systems, the main result may serve a mathematical reasoning why wave phenomena are inherent in quantum systems: This is just because of causality principle and discreteness of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Aliprantis and O. Burkinshaw, Principles of Real Analysis (Academic Press, Inc., 1998).

    MATH  Google Scholar 

  2. J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations (Cambridge Univ. Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  3. V. Anashin and A. Khrennikov, Applied Algebraic Dynamics, de Gruyter Expositions in Math. 49 (Walter de Gruyter GmbH & Co., Berlin-N.Y., 2009).

    Book  MATH  Google Scholar 

  4. V. S. Anashin, A. Yu. Khrennikov and E. I. Yurova, “Characterization of ergodicity of p-adic dynamical systems by using van der Put basis,” Doklady Math. 83 (3), 306–308 (2011).

    MATH  Google Scholar 

  5. V. Anashin, “Automata finiteness criterion in terms of van der Put series of automata functions,” p-Adic Numbers Ultrametric Anal. Appl. 4 (2), 151–160 (2012).

    MATH  MathSciNet  Google Scholar 

  6. V. Anashin, “The non-Archimedean theory of discrete systems,” Math. Comp. Sci. 6 (4), 375–393 (2012).

    MATH  MathSciNet  Google Scholar 

  7. A. Barbé and F. von Haeseler, “Limit sets of automatic sequences,” Adv. Math. 175, 169–196 (2003).

    MATH  Google Scholar 

  8. W. Brauer, Automatentheorie (B. G. Teubner, Stuttgart, 1984).

    Book  MATH  Google Scholar 

  9. J. Carroll and D. Long, Theory of Finite Automata (Prentice-Hall Inc., 1989).

    Google Scholar 

  10. A. N. Cherepov, “On approximation of continuous functions by determinate functions with delay,” Discrete Math. Appl. 22 (1), 1–24 (2010).

    MathSciNet  Google Scholar 

  11. A. N. Cherepov, “Approximation of continuous functions by finite automata,” Discrete Math. Appl. 22 (4), 445–453 (2012).

    MATH  MathSciNet  Google Scholar 

  12. R. Crowell and R. Fox, Introduction to the Knot Theory (Ginu and Co., Boston, 1963).

    Google Scholar 

  13. D. Dubischar, V. M. Gundlach, O. Steinkamp and A. Khrennikov, “The interference phenomenon, memory effects in the equipment and random dynamical systems over the fields of p-adic numbers,” N. Cimento B 114 (4), 373–382 (1999).

    Google Scholar 

  14. B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry: Methods and Applications, vol. II (Springer-Verlag, NY-Berlin-Heidelberg-Tokyo, 1985).

  15. S. Eilenberg, Automata, Languages, and Machines, vol. A (Academic Press, 1974).

    MATH  Google Scholar 

  16. C. Frougny and K. Klouda, “Rational base number systems for p-adic numbers,” RAIPO Theor. Inform. Appl. 46 (1), 87–106 (2012).

    MATH  MathSciNet  Google Scholar 

  17. F. Q. Gouvêa, p-Adic Numbers. An Introduction (Springer-Verlag, Berlin-Heidelberg-New York, 1997).

    Book  MATH  Google Scholar 

  18. R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskii, “Automata, dynamical systems, and groups,” Proc. Steklov Institute Math. 231, 128–203 (2000).

    MathSciNet  Google Scholar 

  19. B. Hasselblatt and A. Katok, A First Course in Dynamics (Cambridge Univ. Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  20. S. Katok, p-Adic Analysis in Comparison with Real (American Math. Soc., 2003).

    Google Scholar 

  21. J. G. Kemeny and J. L. Snell, Finite Markov Chains (Springer-Verlag, 1976).

    MATH  Google Scholar 

  22. A. Khrennikov, “Quantum mechanics from time scaling and random fluctuations at the “quick time scale”,” N. Cimento B 121 (9), 1005–1021 (2006).

    MathSciNet  Google Scholar 

  23. A. Khrennikov, “To quantum averages through asymptotic expansion of classical averages on infinitedimensional space,” J. Math. Phys. 48 (1), 013512 (2007).

    MathSciNet  Google Scholar 

  24. A. Yu. Khrennikov, “Ultrametric Hilbert space representation of quantum mechanics with a finite exactness,” Found. Phys. 26, 1033–1054 (1996).

    Google Scholar 

  25. A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publ., Dordrecht, 1997).

    Book  Google Scholar 

  26. N. Koblitz, p-Adic Numbers, p-Adic Analysis and Zeta-Functions, Graduate Texts in Math. 58 (Springer-Verlag, second edition, 1984).

    Book  Google Scholar 

  27. M. Konečný, “Real functions computable by finite automata using affine representations,” Theor. Comput. Sci. 284, 373–396 (2002).

    MATH  Google Scholar 

  28. L. P. Lisovik and O. Yu. Shkaravskaya, “Real functions defined by transducers,” Cybern. System Anal. 34 (1), 69–76 (1998).

    MATH  MathSciNet  Google Scholar 

  29. M. Lothaire, Algebraic Combinatorics on Words (Cambridge Univ. Press, Cambridge, 2002).

    Book  MATH  Google Scholar 

  30. A. G. Lunts, “The p-adic apparatus in the theory of finite automata,” Problemy Kibern. 14, 17–30 (1965), [in Russian].

    Google Scholar 

  31. K. Mahler, p-Adic Numbers and Their Functions (Cambridge Univ. Press, Cambridge, 1981).

    MATH  Google Scholar 

  32. V. Mansurov, Knot Theory (Chapman & Hall/CRC, Boca Raton-London-NY-Washington, 2004).

    Book  Google Scholar 

  33. A. Mishchenko and A. Fomenko, A Course ofDifferential Geometry and Topology (Mir, Moscow, 1988).

    MATH  Google Scholar 

  34. A. F. Monna, “Sur une transformation simple des nombres p-adiques en nombres ré els,” Indag. Math. 14, 1–9 (1952).

    MathSciNet  Google Scholar 

  35. W. Parry, “On the β-expansions of real numbers,” Acta Math. Acad. Sci. Hung. 11, 401–416 (1960).

    MATH  MathSciNet  Google Scholar 

  36. M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics (Springer-Verlag, 1989).

    Book  MATH  Google Scholar 

  37. A. Rényi, “Representation for real numbers and their ergodic properties,” Acta Math. Acad. Sci. Hung. 8, 477–493 (1957).

    MATH  Google Scholar 

  38. W. H. Schikhof, Ultrametric Calculus (Cambridge Univ. Press, Cambridge, 1984).

    MATH  Google Scholar 

  39. O. Yu. Shkaravskaya, “Affine mappings defined by finite transducers,” Cybern. System Anal. 34 (5), 781–783 (1998).

    MATH  MathSciNet  Google Scholar 

  40. N. Sidorov, “Arithmetic dynamics,” Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Series 310, 145–189 (Cambridge Univ. Press, Cambridge, 2003).

    Article  MathSciNet  Google Scholar 

  41. T. I. Smyshlyaeva, “A criterion for functions defined by automata to be bounded-determinate,” Diskret. Mat. 25 (2), 121–134 (2013).

    MathSciNet  Google Scholar 

  42. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  43. J. Vuillemin, “On circuits and numbers,” IEEE Trans. Comp. 43 (8), 868–879 (1994).

    MATH  MathSciNet  Google Scholar 

  44. J. Vuillemin, “Finite digital synchronous circuits are characterized by 2-algebraic truth tables,” Advances in Computing Science — ASIAN 2000, Lect. Notes Comp. Sci. 1961, 1–7 (2000).

    Article  Google Scholar 

  45. J. Vuillemin, “Digital algebra and circuits,” Verification: Theory and Practice, Lect. Notes Comp. Sci. 2772, 733–746 (2003).

    MathSciNet  Google Scholar 

  46. J. A. Wheeler, “Information, physics, quantum: The search for links,” Complexity, Entropy, and the Physics of Information pp. 309–336 (Addison-Wesley Pub. Co., Redwood City, Calif., 1990).

    Google Scholar 

  47. S. V. Yablonsky, Introduction to DiscreteMathematics (Mir, Moscow, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Anashin.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anashin, V.S. Quantization causes waves: Smooth finitely computable functions are affine. P-Adic Num Ultrametr Anal Appl 7, 169–227 (2015). https://doi.org/10.1134/S2070046615030012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046615030012

Key words

Navigation