Skip to main content
Log in

Experimental simulation of phase relationships and zoning of magmatic nickel-copper sulfide Ores, Russia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The quasiequilibrium directed crystallization technique was used for experimental simulation of zoning characteristic of Cu-rich pyrrhotite-chalcopyrite and pyrrhotite-cubanite-mooihoekite-haycockite ores at the Oktyabr’sky deposit. Directed crystallization of samples I (Fe 32.55, Cu 10.70, Ni 5.40, S. 51.00, Pt = Pd = Rh = Ir= Au = Ag = 0.05 at %) and II (Fe 33.74, Cu 15.94, Ni 1.48, S. 48.75, Pt = Pd = 0.05 at %) was performed. These samples approximate average composition of the ore. Monosulfide (mms) and intermediate (iss) solid solutions progressively crystallized from the melt. The curves of ore element distribution in samples have been drawn. The partition coefficients (k) of ore elements between solid solutions and sulfide melt have been determined depending on melt composition. The paths of melt, mss, and iss compositions are supplemented by tie lines connecting compositions of equilibrium liquid and solid phases. The phase composition of samples after cooling was studied using an optical microscope, XRD, and microprobe. The zoning of sample I is described by the following sequence of phases: monoclinic pyrrhotite → hexagonal pyrrhotite + tetragonal chalcopyrite → tetragonal and cubic chalcopyrite + pentlandite + bornite. Crystallized sample II consists of four zones: (1) hexagonal pyrrhotite and isocubanite; (2) hexagonal pyrrhotite, cubanite, and pentlandite; (3) low-S pc-phase close to haycockite and pentlandite; and (4) mooihoekite, pentlandite, and bornite mixtures. This sequence corresponds to the secondary zoning, which reflects both the primary fractionation of components and the solid-phase reactions during cooling of the crystallized sample. The Rh, Ru, and Ir partition coefficients between mss and melt have been measured, and speciation of PGM in samples has been identified. The results obtained are compared with typical natural Cu-rich sulfide ore of the Oktyabr’sky deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alabuzhev, B.A., A Set of Differential and Derivative Thermal Analysis, in Eksperimental’nye issledovaniya po mineralogii (1968–1969 gg.) (Experimental Studies in Mineralogy, 1968–1969), Novosibirsk: Inst. Geol. Geophys., 1969, pp. 168–175.

    Google Scholar 

  • Ariskin, A.A. and Barmina, G.S., Modelirovanie fazovykh ravnovesii pri kristallizatsii bazal’tovykh magm (Simulation of Phase Equilibria During Crystallization of Basaltic Magmas), Moscow: Nauka, 2000.

    Google Scholar 

  • Ariskin, A.A. and Frenkel, M.Ya., Computer-Aided Simulation of Fractional Crystallization of the Basic Silicate Melts, Geokhimiya, 1982, vol. 20, no. 3, pp. 338–356.

    Google Scholar 

  • Ballhaus, C., Tredoux, M., and Spath, A., Phase Relations in the Fe-Ni-Cu-PGE-S System at Magmatic Temperature and Application to Massive Sulphide Ores of the Sudbury Igneous Complex, Petrology, 2001, vol. 42, no. 10, pp. 1911–1926.

    Article  Google Scholar 

  • Barnes, S.-J., Cox, R.A., and Zientek, M.L., Platinum-Group Element, Gold, Silver and Base Metal Distribution in Compositionally Zoned Sulfide Droplets from the Medvezky Creek Mine, Noril’sk, Russia, Contrib. Mineral. Petrol., 2006, vol. 152, pp. 187–200.

    Article  Google Scholar 

  • Barnes, S.-J., Makovicky, E., Makovicky, M., et al., Partition Coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between Monosulfide Solid Solution and Sulphide Liquid and the Implications for the Formation of Compositionally Zoned Ni-Cu Sulphide Bodies by Fractional Crystallization of Sulphide Liquid, Mineral. Mag., 1994, vol. 58A, pp. 51–52.

    Article  Google Scholar 

  • Barnes, S.-J., Makovicky, E., Makovicky, M., et al., Partition Coefficients for Ni, Cu, Pd, Pt, Rh, and Ir Between Monosulfide Solid Solution and Sulfide Liquid and the Formation of Compositionally Zoned Ni-Cu Sulfide Bodies by Fractional Crystallization of Sulfide Liquid, Can. J. Earth Sci., 1997, vol. 34, no. 4, pp. 366–374.

    Article  Google Scholar 

  • Cabri, L.I., New Data on Phase Relations in the Cu-Fe-S System, Econ. Geol., 1973, vol. 68, pp. 443–454.

    Article  Google Scholar 

  • Cabri, L.I., Laflamme, J.H.G., and Stewart, J.M., On Cooperite, Braggite, and Vysotskite, Am. Mineral., 1978, vol. 63, pp. 832–839.

    Google Scholar 

  • Caye, R., Cervelle, B., Cesbron, F., et al., Isocubanite, a New Definition of the Cubic Polymorph of Cubanite CuFe2S3, Miner. Mag., 1988, vol. 52, pp. 509–514.

    Article  Google Scholar 

  • Congoli, F., Dessureault, Y., and Pelton, A.D., Thermodynamic Modeling of Liquid Fe-Ni-Cu-Co-S Mattes, Metal. Mater. Trans., 1998, vol. B29, pp. 591–601.

    Google Scholar 

  • Craig, J.R. and Kullerud, G., Phase Relations in the Cu-Fe-Ni-S System and Their Application to Magmatic Ore Deposits, Econ. Geol. Mon., 1969, vol. 4, pp. 344–358.

    Google Scholar 

  • Craig, J.R. and Scott, S.D., Sulfide Phase Equilibria, in Sulfide Mineralogy, Washington, DC: Mineral. Soc. Amer., 1976, pp. 1–110.

    Google Scholar 

  • Czamanske, G.K., Kunilov, V.E., Zientek, M.L., et al., A Proton-Microprobe Study of Magmatic Sulfide Ores from the Noril’sk-Talnakh District, Siberia, Can. Mineral., 1992, vol. 30, pp. 249–287.

    Google Scholar 

  • Distler, V.V., Grokhovskaya, T.L., Evstigneeva, T.L., et al., Petrologiya sul’fidnogo magmaticheskogo rudoobrazovaniya (Petrology of Sulfide Magmatic Ore Formation), Moscow: Nauka, 1988.

    Google Scholar 

  • Distler, V.V., Platinum Mineralization of Noril’sk Deposits, Proc. of the Sudbery-Noril’sk Symp., Ontario Geol. Surv., 1992, vol. 5, pp. 243–260.

    Google Scholar 

  • Drebushchak, V.A. and Sinyakova, E.F., Calorimetric Search for the Discontinuity in Fe0.96S-Ni0.96S Solid Solutions, J. Thermal Anal. Calorim., 2007, vol. 89, no. 1, pp. 303–307.

    Article  Google Scholar 

  • Duzhikov, O.A., Distler, V.V., Strunin, B.M., et al., Geology and Metallogeny of Sulfide Deposits, Noril’sk Region, USSR, Spec. Publ., 1992, no. 1.

  • Ebel, D.S. and Naldrett, A.J., Fractional Crystallization of Sulfide Ore Liquids at High Temperatures, Econ. Geol., 1996, vol. 91, pp. 607–621.

    Article  Google Scholar 

  • Ebel, D.S. and Naldrett, A.J., Crystallization of Sulfide Liquids and Interpretation of Ore Composition, Can. J. Earth Sci., 1997, vol. 34, pp. 352–365.

    Article  Google Scholar 

  • Fleet, M.E., Phase Equilibria at High Temperature, Rev. Mineral. Geochem., 2006, vol. 61, pp. 365–419.

    Article  Google Scholar 

  • Fleet, M.E., Chryssoulis, S.L., Stone, W.E., and Weisener, C.G., Partitioning of Platinum-Group Elements and Au in the Fe-Ni-Cu-S System: Experiments on Fractional Crystallization of Sulfide Melt, Contrib. Mineral. Petrol., 1993, vol. 115, no. 1, pp. 36–44.

    Article  Google Scholar 

  • Fleet, M.E. and Pan, Y., Fractional Crystallization of Anhydrous Sulfide Liquid in the System Fe-Ni-Cu-S, with Application to Magmatic Sulfide Deposits, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 3369–3377.

    Article  Google Scholar 

  • Fleet, M.E. and Stone, W.E., Partitioning of Platinum-Group Elements in the Fe-Ni-S System and Their Fractionation in Nature, Geochim. Cosmochim. Acta, 1991, vol. 55, no. 7, pp. 245–253.

    Article  Google Scholar 

  • Flemings, M., Solidification Processing, McGraw-Hills, 1974; Moscow: Mir, 1977.

  • Genkin, A.D., Distler, V.V., Gladyshev, G.D., et al., Sul’fidno-nikelevye rudy Noril’skikh mestorozhdenii (Sulfide Nickel Ores of the Noril’sk Deposits), Moscow: Nauka, 1981.

    Google Scholar 

  • Gill, J.W., Pentlandite Phase Relation in the Cu-Fe-Ni-S System, M.Sc., Montreal: McGill Univ., 1975.

    Google Scholar 

  • Hall, S.R. and Rowland, J.F., The Crystal Structure of Synthetic Mooihoekite, Cu9Fe9S16, Acta Crystallogr., 1973, vol. 29, pp. 2365–2372.

    Article  Google Scholar 

  • Hill, B.R.E.T., Experimental Study of Phase Relations at 600°C in a Portion of the Fe-Ni-Cu-S System and Its Application to Natural Sulphide Assemblages, in Sulphide Deposits in Mafic and Ultramafic Rocks, London, 1984, pp. 14–21.

  • Karup-Moller, S. and Makovicky, E., The Phase System Fe-Ni-S at 900°C, Neues Jahrb. Miner. Monatsh., 1998, no. 8, pp. 373–384.

  • Kosyakov, V.I., Possibilities of Using Directed Crystallization for Solution of Petrologic Problems, Geol. Geofiz., 1998, vol. 39, no. 9, pp. 1242–1253.

    Google Scholar 

  • Kosyakov, V.I., Buzhdan, Ya.M., and Shestakov, V.A., Thermodynamic analysis of Quasiequilibrium Directed Crystallization of Multicomponent Melts, in Informal Mathematical Models in Chemical Thermodynamics (Informal Mathematical Models in Chemical Thermodynamics), Novosibirsk: Nauka, 1991, p. 130–153.

    Google Scholar 

  • Kosyakov, V.I. and Sinyakova, E.F., Directional Crystallization of Fe-Ni Sulfide Melts within the Crystallization Field of Monosulfide Solid Solution, Geochem. Int., 2005, vol. 43, no. 4, p. 372–385.

    Google Scholar 

  • Kosyakov, V.I. and Sinyakova, E.F., Behavior of Components of Melts Similar in Compositions to Nickel Concentrate and Nickel Matte at Directed Crystallization, J. Eng. Thermophysics, 2008, vol. 17, no. 1, pp. 94–104.

    Google Scholar 

  • Kosyakov, V.I. and Sinyakova, E.F., Primary, Secondary, and Admixture Zonation of Copper-Nickel Ores during Fractional Crystallization of Sulfide Melts, Dokl. Earth Sci., 2010, vol. 432, no. 2, pp. 829–834.

    Article  Google Scholar 

  • Kullerud, G., Yund, R.A., and Moh, G.H., Phase Relations in the Cu-Fe-S, Cu-Ni-S and Fe-Ni-S Systems, Magmatic Ore Deposits. Econ. Geol. Monograph, 1969, vol. 4, pp. 323–343.

    Google Scholar 

  • Lavrent’ev, Yu.G. and Usova, L.V., RMA89 Program Complex for Quantitative XRS Microanalysis on a Camebax Micro Microprobe, Zh. Anal. Khim., 1991, vol. 16, no. 1, pp. 67–75.

    Google Scholar 

  • Li, C., Barnes, S.-J., Makovicky, E., et al., Partitrioning of Nickel, Copper, Iridium, Rhenium, Platinum, and Palladium between Monosulfide Solid Solution and Sulfide Liquid: Effects of Composition and Temperature, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 7, pp. 1231–1238.

    Article  Google Scholar 

  • Li, C. and Naldrett, A.J., A Numerical Model for the Compositional Variations of Sudbury Sulfide Ores and Its Application To Explor Ation, Econ. Geol., 1994, vol. 89, pp. 1599–1607.

    Article  Google Scholar 

  • Makovicky, E., Karup-Moller, S., Makovicky, M., and Rose-Hansen, J., Experimental Studies on the Phase Systems Fe-Ni-Pd-S and Fe-Pt-Pd-As-S Applied to PGE Deposits, Mineral. Petrol., 1990, vol. 42, pp. 307–319.

    Article  Google Scholar 

  • Matkovic, P., El-Boragy, M., and Schubert, K., Kristallstruktur von Pd16S7, J. of the Less-Common Metals, 1976, vol. 50, pp. 165–176.

    Article  Google Scholar 

  • Morimoto, N. and Kullerud, G., Polimorphism in Bornite, Am. Mineral., 1961, vol. 46, pp. 1270–1282.

    Google Scholar 

  • Müller, G., Crystal Growth from the Melt, Berlin, Springer, 1988; Moscow: Mir, 1991.

    Book  Google Scholar 

  • Naldrett, A.J., Sulfide Nickel Deposits: Classification, Composition, and Genesis, in Econ. Geology, Seventy-Fifth Anniversary Volume, 1905–1980, The Econ. Geol. Publ. Company, 1981; Moscow: Mir, 1984, vol. 2, pp. 253–333.

    Google Scholar 

  • Naldrett, A.J., Sul’fidnye nikelevye mestorozhdeniya mednonikelevykh i platinometal’nykh rud (Sulfide Nickel Deposits of Copper-Nickel and PGE Ores), St. Petersburg: St. Petersburg State Univ., 2003.

    Google Scholar 

  • Naldrett, A.J., Magmatic Sulfide Deposits, in Geology, Geochemistry and Exploration, Berlin: Springer, 2003, pp. 1–20.

  • Naldrett, A.J., From the Mantle to the Bank: the Life of a Ni-Cu-(PGE) Sulfide Deposit, South African J. Geol., 2010, vol. 113, pp. 1–32.

    Article  Google Scholar 

  • Naldrett, A.J., Ebel, D.S., Asif, M., et al., Fractional Crystallization of Sulfide Melts As Illustrated at Noril’sk and Sudbury, Eur. J. Mineral., 1997, no. 9, pp. 365–377.

  • Nathan, H.D. and Van Kirk, C.K., A Model of Magmatic Crystallization, J. Petrol., 1978, vol. 19, pp. 66–94.

    Google Scholar 

  • Peregoedova, A.V., Fedorova, Zh.N., and Sinyakova, E.F., Physicochemical Formation Conditions of Pentlandite in Copper-Bearing Sulfide Parageneses, Geol. Geofiz., 1995, vol. 36, no. 3, pp. 98–105.

    Google Scholar 

  • Peregoedova, A. and Ohnenstetter, M., Collectors of Pt, Pd and Rh in a S-Poor Fe-Ni-Cu Sulfide System at 760°C: Experimental Data and Application to Ore Deposits, Can. Mineral., 2002, vol. 40, pp. 527–561.

    Article  Google Scholar 

  • Piloyan, G.O., Vvedenie v teoriyu termicheskogo analiza (Introduction to Theory of Thermal Analysis), Moscow: Nauka, 1964.

    Google Scholar 

  • Raghavan, V., Cu-Fe-Ni-S (Copper-Iron-Nickel-Sulfur), J. Phase Equilibria and Diffusion, 2004, vol. 25, no. 5, pp. 458–461.

    Article  Google Scholar 

  • Ramajani, N. and Prewitt, C.T., Thermal Expansion of the Pentlandite Structure, Am. Mineral., 1975, vol. 60, pp. 39–48.

    Google Scholar 

  • Rudashevsky, N.S., McDonald, A.M., Cabri, L.J., et al., Skaergaardite, PdCu, a New Platinum-Group Intermetal-lic Mineral from the Skaergaard Intrusion, Greenland, Mineral. Mag., 2004, vol. 68, no. 4, pp. 615–632.

    Article  Google Scholar 

  • Sharapov, V.N and Cherepanov, A.N., Dinamika differentsiatsii magm (Dynamics of Magma Differentiation), Novosibirsk: Nauka, 1986.

    Google Scholar 

  • Sharapov, V.N and Isaenko, L.I., Dynamic of Basic Magma Differentiation, in Differentiation of Matter in Magmatic and rudoobrazuyushchikh protsessakh (Differentiation of Matter in Magmatic and Ore-Forming Processes), Novosibirsk: Nauka, 1977, pp. 34–54.

    Google Scholar 

  • Sinyakova, E.F., Kosyakov, V.I., and Kolonin, G.R., Behavior of PGM during Crystalization of Melts in the Fe-Ni-S System (Join FexNi0.49 −x S0.51), Geol. Geofiz., 2001, vol. 42, no. 9, pp. 1354–1369.

    Google Scholar 

  • Sinyakova, E.F., Kosyakov, V.I., and Nenashev, B.G., Coefficients of Rhodium Partition between Melt and Monosulfide Solid Solution during Oriented Crystallization of Melt in the Fe-FeS-NiS-Ni System, Dokl. Earth Sci., 2004, vol. 397, no. 5, pp. 649–683.

    Google Scholar 

  • Sinyakova, E.F. and Kosyakov, V.I., Phase Relations and Sulfur Fugacity in the Fe-FeS-NiS-Ni System at a Temperature of 900°C, Geol. Geofiz., 2006, vol. 47, no. 7, pp. 838–849.

    Google Scholar 

  • Sinyakova, E.F. and Kosyakov, V.I., Experimental Modeling of Zoning in Copper-Nickel Sulfide Ores, Dokl. Earth Sci., 2007, vol. 417A, no. 9, pp. 1380–1385.

    Article  Google Scholar 

  • Sinyakova, E.F. and Kosyakov, V.I., Experimental Modeling of Zonality of Copper-Rich Sulfide Ores in Copper-Nickel Deposits, Dokl. Earth Sci., 2009, vol. 427, no. 5, pp. 787–792.

    Article  Google Scholar 

  • Stevens, G.T., Hatherly, M., and Bowles, J.S., The Ordered Phase Fields of the Iron-Nickel-Platinum Equilibrium Diagram, J. Materials Science, 1978, vol. 13, pp. 499–504.

    Article  Google Scholar 

  • Tarasov, A.V. and Sal’nikov, V.A., The Ore-Controlling Role of Fructure Structures during Formation of the Noril’sk Cu-Ni deposit, Geol. Geofiz., 1976, vol. 17, no. 10, pp. 52–60.

    Google Scholar 

  • Vaughan, D.J. and Craig, J.R., Sulfide Ore Mineral Stabilities, Morphologies, and Intergrowth Textures, in Geochemistry of Hydrothermal Ore Deposits, New York: Holt, Rinehart, and Winston, 1997, pp. 367–434.

    Google Scholar 

  • Vaughan, D.J. and Craig, J.R., Mineral Chemistry of Metal Sulfides, Cambridge: Cambridge Univ. Press, 1978; Moscow: Mir, 1981.

    Google Scholar 

  • Waldner, P. and Pelton, A.D., Critical Thermodynamic Assessment and Modeling of the Fe-Ni-S System, Metal. Mater. Trans., 2004, vol. B35, pp. 897–907.

    Google Scholar 

  • Zolotukhin, V.V., Osnovnye zakonomernosti prototektoniki i voprosy formirovaniya rudonosnykh trappovykh intruzii (Principles of Prototectonics and Formation of Ore-Bearing Trap Intrusions), Moscow: Nauka, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Distler.

Additional information

Original Russian Text © F.I. Kosyakov, E.F. Sinyakova, V.V. Distler, 2012, published in Geologiya Rudnykh Mestorozhdenii, 2012, Vol. 54, No. 3, pp. 221–252.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosyakov, F.I., Sinyakova, E.F. & Distler, V.V. Experimental simulation of phase relationships and zoning of magmatic nickel-copper sulfide Ores, Russia. Geol. Ore Deposits 54, 179–208 (2012). https://doi.org/10.1134/S1075701512030051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701512030051

Keywords

Navigation