Skip to main content
Log in

Heat and mass transfer in a thermochemical plume under an oceanic plate far from the mid-ocean ridge axis

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Heat and mass transfer processes in the conduit of a thermochemical plume located beneath an oceanic plate far from a mid-ocean ridge (MOR) proceed under conditions of horizontal convective flows penetrating the plume conduit. In the region of a mantle flow approaching the plume conduit (in the frontal part of the conduit), the mantle material heats and melts. The melt moves through the plume conduit at the average velocity of flow v and is crystallized on the opposite side of the conduit. The heat and the chemical dope transferred by the conduit to the mantle flow are carried away by crystallized mantle material at the velocity v. The main equations of heat and mass transfer are obtained for a thermochemical plume interacting with a horizontal convective mantle flow. The joint multiparameter problem of heat and mass transfer is solved for a thermochemical plume located far from an MOR axis. The dope concentration at the base of the plume is found as a function of the Lewis number. The Lewis numbers and, accordingly, the diffusion coefficients of the chemical dope in the plume conduit far from the MOR axis are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. C. Bennett, T. M. Esat, and M. D. Norman, “Two-Mantle Plume Components in Hawaiian Picrites Inferred from Correlated Os-Pb Isotopes,” Nature 381, 221–224 (1996).

    Article  Google Scholar 

  2. F. Birch, J. F. Schairer, and H. C. Spicer, Handbook of Physical Constants (Geol. Soc. Am., New York, 1942; IL, Moscow, 1949).

    Google Scholar 

  3. A. D. Brandon, R. J. Walker, J. W. Morgan, et al., “Coupled 186Os and 187Os Evidence for Core-Mantle Interaction,” Science 280, 1570–1573 (1998).

    Article  Google Scholar 

  4. A. D. Brandon, M. D. Norman, R. J. Walker, and J. W. Morgan, “186Os-187Os Systematics of Hawaiian Picrites,” Earth Planet. Sci. Lett. 174, 25–42 (1999).

    Article  Google Scholar 

  5. A. D. Brandon, R. J. Walker, I. S. Puchtel, et al., “186Os-187Os Systematics of Gorgona Island Komatiites: Implications for Early Growth of the Inner Core,” Earth Planet. Sci. Lett. 206, 411–426 (2003).

    Article  Google Scholar 

  6. A. D. Brandon and R. J. Walker, “The Debate over Core-Mantle Interaction,” Earth Planet. Sci. Lett. 232, 211–225 (2005).

    Article  Google Scholar 

  7. C. Class and S. L. Goldstein, “Evolution of Helium Isotopes in the Earth’s Mantle,” Nature 436, 1107–1112 (2005).

    Article  Google Scholar 

  8. R. T. Cox, “Hawaiian Volcanic Propagation and Hawaiian Swell Asymmetry: Evidence of Northwestward Flow of the Deep Upper Mantle,” Tectonophysics 310(1–4), 69–79 (1999).

    Article  Google Scholar 

  9. G. F. Davies, “Temporal Variation of the Hawaiian Plume Flux,” Earth Planet. Sci. Lett. 113(1/2), 277–286 (1992).

    Article  Google Scholar 

  10. G. F. Davies and M. A. Richards, “Mantle Convection,” J. Geol. 100(2), 151–206 (1992).

    Article  Google Scholar 

  11. N. L. Dobretsov, A. G. Kirdyashkin, and I. N. Gladkov, “Problems of Deep Geodynamics and Modeling of Mantle Plumes,” Geol. Geofiz. 34(12), 5–21 (1993).

    Google Scholar 

  12. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (SO RAN, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  13. N. L. Dobretsov, A. A. Kirdyashkin, and A. G. Kirdyashkin, “Physicochemical Conditions at the Core-Mantle Boundary and Formation of Thermochemical Plumes,” Dokl. Akad. Nauk 393(6), 797–801 (2003).

    Google Scholar 

  14. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, “Parameters of Hotspots and Thermochemical Plumes,” Geol. Geofiz. 46(6), 589–602 (2005).

    Google Scholar 

  15. N. L. Dobretsov, A. A. Kirdyashkin, A. G. Kirdyashkin, et al., “Parameters of Hotspots and Thermochemical Plumes during Their Ascent and Eruption,” Petrologiya 14(5), 508–523 (2006) [Petrology 14, (5), 477–491 (2006)].

    Google Scholar 

  16. R. A. Duncan and M. A. Richards, “Hotspots, Mantle Plumes, Flood Basalts, and True Polar Wandering,” Rev. Geophys. 29, 31–50 (1991).

    Article  Google Scholar 

  17. R. E. Eckert and R. M. Drake, Theory of Heat and Mass Transfer (Gosenergoizdat, Moscow, 1961) [in Russian].

    Google Scholar 

  18. M. J. Fouch, K. M. Fischer, and M. E. Wysession, “Lowermost Mantle Anisotropy beneath the Pacific: Imaging the Source of the Hawaiian Plume,” Earth Planet. Sci. Lett. 190(3–4), 167–180 (2001).

    Article  Google Scholar 

  19. Y. Fukao, A. To, and M. Obayashi, “Whole Mantle Wave Tomography Using P and PP-P Data,” J. Geophys. Res. 108(B1) (2003).

  20. E. J. Garnero, “Heterogeneity of the Lowermost Mantle,” Ann. Rev. Earth Planet. Sci. 28, 509–537 (2000).

    Article  Google Scholar 

  21. E. J. Garnero, “A New Paradigm for Earth’s Core-Mantle Boundary,” Science 304, 834–836 (2004).

    Article  Google Scholar 

  22. R. W. Griffiths and M. A. Richards, “The Adjustment of Mantle Plumes to Changes in Plate Motion,” Geophys. Rev. Lett. 16, 437–440 (1989).

    Article  Google Scholar 

  23. D. R. Hilton and D. R. Porcelli, “Noble Gases As Mantle Tracers,” in The Mantle and Core, Vol. 2 of Treatise on Geochemistry, Ed. by H. Holland and K. Turekian (Elsevier, Amsterdam, 2003), pp. 277–318.

    Google Scholar 

  24. M. Humayun, L. Qin, and M. D. Norman, “Geochemical Evidence for Excess Iron in the Mantle beneath Hawaii,” Science 306, 91–94 (2004).

    Article  Google Scholar 

  25. Y. Ji and H.-C. Nataf, “Detection of Mantle Plumes in the Lower Mantle by Diffraction Tomography: Hawaii,” Earth Planet. Sci. Lett. 159(3–4), 99–115 (1998).

    Article  Google Scholar 

  26. A. G. Kirdyashkin and I. N. Gladkov, “Threshold Plumes and Hotspots of the Earth,” Dokl. Akad. Nauk 339(2), 250–252 (1994).

    Google Scholar 

  27. A. A. Kirdyashkin, N. L. Dobretsov, and A. G. Kirdyashkin, “Thermochemical Plumes,” Geol. Geofiz. 45(9), 1057–1073 (2004).

    Google Scholar 

  28. A. A. Kirdyashkin, N. L. Dobretsov, A. G. Kirdyashkin, et al., “Hydrodynamic Processes Associated with Mantle Plume Ascent and the Formation Conditions of the Eruption Vent,” Geol. Geofiz. 46(9), 891–907 (2005).

    Google Scholar 

  29. A. A. Kirdyashkin, A. G. Kirdyashkin, and N. V. Surkov, “Thermal Gravitational Convection in the Asthenosphere beneath a Mid-Ocean Ridge and the Stability of Main Deep Parageneses,” Geol. Geofiz. 47(1), 76–94 (2006).

    Google Scholar 

  30. M. D. Kurz, J. Curtice, D. E. Lott, and A. Solow, “Rapid Helium Isotopic Variability in Mauna Kea Shield Lavas from the Hawaiian Scientific Drilling Project,” Geochem. Geophys. Geosyst. 5 (2004).

  31. J. Lei and D. Zhao, “A New Insight into the Hawaiian Plume,” Earth Planet. Sci. Lett. 241(3–4), 438–453 (2006).

    Article  Google Scholar 

  32. X. Li, R. Kind, K. Priestley, et al., “Mapping the Hawaiian Plume Conduit with Converted Seismic Waves,” Nature 405, 938–941 (2000).

    Article  Google Scholar 

  33. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  34. D. E. Loper, “Mantle Plumes,” Tectonophysics 187(4), 373–384 (1991).

    Article  Google Scholar 

  35. R. Montelli, G. Nolet, F. Dahlen, et al., “Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle,” Science 303, 338–343 (2004).

    Article  Google Scholar 

  36. W. J. Morgan, “Convection Plumes in the Lower Mantle,” Nature 230, 42–43 (1971).

    Article  Google Scholar 

  37. J. P. Morgan, W. J. Morgan, and E. Price, “Hotspot Melting Generates Both Hot Spot Volcanism and a Hotspot Swell,” J. Geophys. Res. 100(B5), 8045–8062 (1995).

    Google Scholar 

  38. E. S. Persikov, Viscosity of Magma Melts (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  39. D. Porcelli and A. N. Halliday, “The Core As a Possible Source of Mantle Helium,” Earth Planet. Sci. Lett. 192(1), 45–56 (2001).

    Article  Google Scholar 

  40. K. Putirka, “Melting Depths and Mantle Heterogeneity beneath Hawaii and the East Pacific Rise,” J. Geophys. Res. 104(B2), 2817–2829 (1999).

    Article  Google Scholar 

  41. N. M. Ribe, “Dynamical Geochemistry of the Hawaiian Plume,” Earth Planet. Sci. Lett. 88(1/2), 37–46 (1988).

    Article  Google Scholar 

  42. M. A. Richards and R. W. Griffiths, “Deflection of Plumes by Mantle Shear Flow,” Geophys. J. Int. 94(3), 367–376 (1988).

    Article  Google Scholar 

  43. Y. Shen, C. J. Wolfe, and S. C. Solomon, “Seismological Evidence for a Mid-Mantle Discontinuity beneath Hawaii and Iceland,” Earth Planet. Sci. Lett. 214(1–2), 143–151 (2003).

    Article  Google Scholar 

  44. N. H. Sleep, “Hotspots and Mantle Plumes: Some Phenomenology,” J. Geophys. Res. 95(B5), 6715–6736 (1990).

    Article  Google Scholar 

  45. A. V. Sobolev, A. W. Hofmann, S. V. Sobolev, and I. K. Nikogosian, “An Olivine-Free Mantle Source of Hawaiian Shield Basalts,” Nature 434, 590–597 (2005).

    Article  Google Scholar 

  46. I. N. Tolstikhin, “Helium Isotopes in Nature,” in New Ideas and Approaches to the Study of Geological Structure, Vol. 3 of Geology and Minerals of the Kola Peninsula (Apatity, 2002), pp. 28–50 [in Russian].

  47. V. P. Trubitsyn, “Principles of the Tectonics of Floating Continents,” Fiz. Zemli, No. 9, 3–40 (2000) [Izvestiya, Phys. Solid Earth 36, 708–741 (2000)].

  48. V. P. Trubitsyn, “Tectonics of Floating Continents,” Vestnik Ross. Akad. Nauk 75(1), 10–21 (2005).

    Google Scholar 

  49. V. P. Trubitsyn, W. D. Mooney, and D. A. Abbott, “Cool Cratons and Thermal Blankets: How Continents Affect Mantle Convection,” Int. Geol. Rev. 45(6), 479–496 (2003).

    Article  Google Scholar 

  50. E. Van Ark and J. Lin, “Time Variation in Igneous Volume Flux of the Hawaii-Emperor Hot Spot Seamount Chain,” J. Geophys. Res. 109(B11), 11401 (2004).

    Google Scholar 

  51. P. R. Vogt, “Global Magmatic Episodes: New Evidence and Implications for the Steady-State Mid-Oceanic Ridge,” Geology 7(2), 93–98 (1979).

    Article  Google Scholar 

  52. R. J. Walker, M. F. Horan, G. K. Czamanske, et al., “Re-Os Isotopic Evidence for an Enriched-Mantle Source for the Noril’sk-Type, Ore-Bearing Intrusions, Siberia,” Geochim. Cosmochim. Acta 58(19), 4179–4197 (1994).

    Article  Google Scholar 

  53. Q. Williams and E. J. Garnero, “Seismic Evidence for Partial Melt at the Base of the Mantle,” Science 273, 1528–1530 (1996).

    Article  Google Scholar 

  54. D. Zhao, “Seismic Structure and Origin of Hotspots and Mantle Plumes,” Earth Planet. Sci. Lett. 192(3), 251–265 (2001).

    Article  Google Scholar 

  55. D. Zhao, “Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics,” Phys. Earth Planet. Inter. 146(1), 3–34 (2004).

    Article  Google Scholar 

  56. S. Zhong and A. B. Watts, “Constraints on the Dynamics of Mantle Plumes from Uplift of the Hawaiian Islands,” Earth Planet. Sci. Lett. 203(1), 105–116 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Kirdyashkin, N.L. Dobretsov, A.G. Kirdyashkin, 2008, published in Fizika Zemli, 2008, No. 6, pp. 17–30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirdyashkin, A.A., Dobretsov, N.L. & Kirdyashkin, A.G. Heat and mass transfer in a thermochemical plume under an oceanic plate far from the mid-ocean ridge axis. Izv., Phys. Solid Earth 44, 456–468 (2008). https://doi.org/10.1134/S1069351308060025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351308060025

PACS numbers

Navigation